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ADVERTISEMENT. 

The  substance  of  the  present  volume  was  originally  pre- 

pared as  part  of  a  course  of  lectures  for  the  students  of  mathe- 

matics in  Harvard  College.  But  at  the  request  of  some  of  my 

pupils,  and  especially  of  my  friend  Mr.  J.  D.  Runkle,  I  have  been 

induced  to  undertake  its  publication.  The  liberality  of  my 

publishers,  the  well-known  firm  of  Little,  Brown  &  Co.,  who  gen- 

erously gave  directions  to  the  printers,  that  no  expense  should  be 

spared  in  its  typographical  execution,  seemed  to  impose  upon  me 

an  increased  obligation  to  perform  my  portion  of  the  task  to 

the  best  of  my  ability.  I  have  consequently  reexamined  the 

memoirs  of  the  great  geometers,  and  have  striven  to  consoli- 
date their  latest  researches  and  their  most  exalted  forms  of 

thought  into  a  consistent  and  uniform  treatise.  If  I  have, 

hereby,  succeeded  in  opening  to  the  students  of  my  country  a 

readier   access   to   these    choice  jewels   of  intellect,  if  their   bril- 
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liancy  is  not  impaired  in  this  attempt  to  reset  them,  if  in 

their  new  constellation  they  illustrate  each  other  and  concen- 

trate a  stronger  light  upon  the  names  of  their  discoverers,  and 

still  more,  if  any  gem  which  I  may  have  presumed  to,  add,  is 

not  wholly  lustreless  in  the  collection,  I  shall  feel  that  my 

work  has  not  been  in  vain.  The  treatise  is  not,  however, 

designed  to  be  a  mere  compilation.  The  attempt  has  been 

made  to  carry  back  the  fundamental  principles  of  the  science 

to  a  more  profound  and  central  origin  ;  and  thence  to  shorten 

the  path  to  the  most  fruitful  forms  of  research.  It  has, 

moreover,  been  my  chief  object  to  develop  the  special  forms 

of  analysis,  which  are  usually  neglected,  because  they  are  only 

applicable  to  particular  problems,  and  to  restore  them  to  their 

true  place  in  the  front  ranks  of  scientific  progress.  The 

methods  which,  on  account  of  their  apparent  generality,  have 

usually  attracted  the  almost  exclusive  attention  of  the  student, 

are,  on  the  contrary,  reestablished  in  their  true  position  as 

higher   forms   of  speciality. 

BENJAMIN  PEIRCE. 
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ANALYTIC   MECHANICS. 

CHAPTER  I. 

MOTION,  FORCE,  AND   MATTEE. 

§  1.  Motion  is  an  essential  element  of  all  physical  phenomena  ; 

and  its  introduction  into  the  universe  of  matter  was  necessarily  the 

preliminary  act  of  creation.  The  earth  must  have  remained  forever 

"  without  form,  and  void ;  "  and  eternal  darkness  must  have  been 

upon  the  face  of  the  deep,  if  the  Spirit  of  God  had  not  first  "moved 

upon  the  face  of  the  waters." 
2.  Motion  appears  to  be  the  simplest  manifestation  of  power, 

and  the  idea  of  force  seems  to  be  primitively  derived  from  the 

conscious  effort  which  is  required  to  produce  motion.  Force  may, 

then,  be  regarded  as  having  a  spiritual  origin,  and  when  it  is 

imparted  to  the  physical  world,  motion  is  its  usual  form  of  mechan- 
ical exhibition. 

3.  Matter  is  purely  inert.  It  is  susceptible  of  receiving  and 

containing  any  amount  of  mechanical  force  which  may  be  commu- 

nicated to  it,  but  cannot  originate  new  force  or,  in  any  way,  trans- 
form the  force  which  it  has  received. 

1 
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CHAPTER  II. 

MEASURE   OF  MOTION  AND   FORCE. 

MEASUKE    OP   MOTION. 

§  4.  Uniform  Motion  is  that  of  a  body  which  describes  equal 

spaces  in  equal  times. 

5.  Velocity  is  the  measure  of  motion.  In  the  case  of  uniform 

motion  it  is  the  distance  passed  over  in  a  given  time,  which  is 

assumed  as  the  unit  of  time,  and,  in  any  case,  it  is  at  each  instant 

the  space  which  the  body  would  pass  over,  if  it  preserved  the  same 

motion  during  a  unit  of  time. 

6.  If  the  space  described  by  a  body  in  the  time  t  is  denoted 

by  s,  the  expression  for  the  velocity  v  is,  in  the  case  of  uniform 
motion, 

s 

If  the  differential  is  denoted  by  d  and  the  derivative  by  D,  the 

expression  for  the  velocity  is,  in  any  case, 

ds  t-> 

II. 

MEASURE    OP    FORCE. 

7.     Experiments   have    shown  that   the   exertion  which  is  re- 

quired to  move  any  body,  is  proportional  to  the  product  of  the 
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intensity  of  the  effort  into  the  space  through  which  it  is  exerted. 

This  product  is,  then,  the  proper  measure  of  the  whole  amount 

of  force  which  is  necessary  to  the  production  of  the  motion  ; 

long  established  custom  has,  however,  limited  the  use  of  the 

word  force  to  designate  the  intensity  of  the  effort,  and  the  ivhole 

amount  of  exertion  may  be  denoted  by  the  term  poivcr.  Hence,  if 

the  power  P  is  produced  by  the  exertion  of  a  constant  force  F, 

acting  through  the  space  s,  the  expression  of  the  force  is 

P 

F= s 

But  if  the  force  is  variable  in  its  action,  the  expression  of  its 

intensity  at  any  point  is 

F=~  =  DSF. ds 

8.  It  is  found  by  observation  that  the  force  of  a  moving  body 

is  proportional  to  its  velocity.  Thus,  if  m  is  the  force  of  a  body 

when  it  moves  with  the  unit  of  velocity,  its  force,  when  it  has 

the  velocity  v,  is  mv. 
9.  Different  bodies  have  different  intensities  of  force  when 

they  move  with  the  same  velocity.  The  mass  of  a  body  is  its 

force,  when  it  moves  with  the  unit  of  velocity ;  thus,  in  in  the 

preceding  article,  denotes  the  mass  of  the  body. 

10.  The  force  communicated  to  a  freely  moving  body,  by  a 

force  which  acts  in  the  direction  of  the  motion,  is  found  to  be  the 

product  of  the  intensity  of  the  acting  force,  multiplied  by  the 

time  of  its  action.  Thus,  if  the  mass  m,  acted  upon  by  the  con- 

stant force  F,  for  the  time  t,  in  the  direction  of  its  motion,  has 

its  velocity  increased  by  v,  the  addition  to  the  force  of  the  mov- 

ing body  is 

mv  =  Ft. 



In  case  the  acting  force  is  not  constant,  the  rate  at  which  the 

force  of  the  body  increases  is 

mJDt  v  =  F. 

III. 

FOKCE    OF   MOVING   BODIES. 

11.  The  power  with  ivhich  a  body  moves  is  equal  to  the  product  of 

one  half  of  its  mass  multiplied  by  the  square  of  its  velocity. 

For  if  the  body,  of  which  the  mass  is  m,  is  acted  upon  by 

the  force  F,  until  from  the  state  of  rest  it  reaches  the  velocity 

v,  the  power  P,  which  has  been  communicated  to  it,  and  which  it 

consequently  retains,  must,  by  (314)  *  and  (43),  give  the  equation 

DsP  =  mDtv. 

The  derivative  of  P  relatively  to  t,  is  by  (224) 

DtP  =  DSP.  Dts  =  vDsP  =  mvDtv. 

The  integral  of  this  equation  is 

P  =  imv2, 

to  which  no  constant  is  to  be  added,  because  the  power  vanishes 

with  the  velocity.     [Note  A.) 

12.  Hence  the  power  of  a  moving  body  is  equal  to  one  half 

of  the  product  of  its  force  multiplied  by  its  velocity. 

*  The  form  of  reference  here  given  is  by  means  of  numbers,  of  which  the  leading 

number  refers  to  the  page,  and  the  secondary  number,  which  is  printed  in  smaller 

type,  refers  to  the  place  upon  the  page,  estimated  from  the  top  of  the  page,  in  lines  of 

equal  typographic  interval.  Printed  marks,  corresponding  to  these  intervals,  accom- 

pany  each  copy  of  the  work.  Thus,  (3i4)  denotes  the  equation  which  is  at  the  14th 

typographic  interval  from  the  top  of  the  third  page. 



13.  It  is  convenient  to  refer  the  measure  of  force  to  the 

unit  of  muss  as  a  standard.  Thus,  if  F  is  the  force  exerted  upon 

each  unit  of  mass,  the  force  exerted  upon  the  body  of  which  the 

mass  is  m,  is  mF.     With  the  F,  used  in  this  sense,  (43)  becomes 

D,v  =  F. 

>♦- 
CHAPTER  III. 

FUNDAMENTAL    PRINCIPLES    OF   PEST  AND   MOTION. 

TENDENCY    TO    MOTION. 

§  14.  A  system  of  moving  bodies  may  be  regarded  mechanically  as  a 

system  of  forces  or  poivers,  which  must  be  the  exact  equivalent  of  all  the 

forces  or  powers  which,  by  simultaneous  or  successive  communication  to  the 

bodies,  are  united  in  its  formation. 

This  results  from  the  inertness  of  matter,  and  its  incapacity  to 

increase,  diminish,  or  vary  in  any  way,  the  power  which  it  contains. 

15.  It  also  follows  from  its  inertness,  that  matter  yields  instan- 

taneously to  every  force,  and  cannot  resist  any  tendency  to  the 

communication  or  abstraction  of  power.  With  a  system  which  is 

at  rest,  there  can  consequently  be  no  tendency  to  the  communi- 

cation of  power. 

16.  The  tendency  of  any  body  or  system  of  bodies  to  move 

in  any  given  way  is  easily  ascertained.  It  is  only  necessary  to  sup- 

pose the  system  moved  with  the  proposed  motion  to  an  infinitesimal 
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distance.  The  product  of  the  corresponding  distance,  by  which  each 

body  of  the  system  advances  in  the  direction  in  which  each  force 

acts,  multiplied  by  the  intensity  of  the  force  is,  by  §  7,  the  corre- 

sponding power  which  the  force  communicates  directly  to  the 

body,  and  through  it  to  the  system. 

The  ivhole  amount  of  power  which  is  thus  communicated  by  all  the 

forces  to  the  system,  or  rather  its  ratio  to  the  infinitesimal  element  of  the 

proposed  motion  is  evidently  the  measure  of  the  tendency  of  the  system  to 

this  proposed  motion. 

It  must  be  observed  that,  when  a  body  moves  in  a  direction 

opposite  to  that  of  the  action  of  the  force,  the  corresponding  product 

is  negative,  and  must  be  used  with  the  negative  sign  in  forming  the 

algebraical  sum,  which  represents  the  whole  amount  of  power  com- 
municated to  the  system. 

17.  By  a  skilful  use  of  the  principles  of  the  preceding  sec- 

tion, all  the  elementary  tendencies  to  motion  in  a  system  may  be 

determined,  and,  therefore,  all  the  elements  of  change  of  motion  in 

the  system  which  is  actually  moving,  or  all  the  conditions  of  equi- 

librium in  the  system  which  is  at  rest.     Thus,  let 

mi,  m2,  m3,  &c,  denote  the  masses  of  a  system  of  bodies; 

Flf  F[,  F",  &c,  the  forces  which  act  upon  each  unit  of  m± ; 
F2,  F2,  F2,  &c,  the  forces  which  act  upon  each  unit  of  m2 ; 
&c.  &c. ; 

dfx,  df[,  df{,  &c,  the  distances   by  which  mx  advances  in  the 

direction  of  the  forces  Fx,  F[,  F'{,  &c,  in  consequence  of 

any  proposed  motion  ; 

df2,  df2,  df2,  &c. ;  tT/3,  &c,  the  corresponding  distances  for  the 

other  bodies  and  forces  of  the  system  ; 

-2" ',  the  sum  of  all  quantities  of  the  same  kind,  obtained  by 
changing  the  accents ; 
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21}  the  sum  of  all  quantities  of  the  same  kind,  obtained  by 

changing  the  underwritten  numbers  ; 

JS^j  the  sum  of  all  quantities  of  the  same  kind,  obtained  by 

all  admissible  combinations  of  both  changes. 

The  power  communicated  to  the  system  by  the  proposed 

motion  through  m1:  m2,  &c,  is 

S'miFJfi  =  m,  {Fxdfx  +  F[df[  +  &c.) 

Z'm2F2df2  =  m2  {F2df2  +  F'2df2  +  &c.) &c.  &c. ; 

and  the  whole  power  communicated  is 

=  Z'mxFxdfx  +  2'm2F2df2  -f  &c. 

This  is,  therefore,  the  complete  measure  of  the  tendency  in  the 

system  to  the  proposed  motion,  or  of  the  change  of  motion  which 

the  moving  system  would  experience  in  the  direction  of  the  pro- 

posed motion.  But  by  a  simple  change  in  the  values  of  cT/i,  df[, 

cT/*2,  df2,  &c,  the  tendency  to  any  other  proposed  motion  may  be 
measured ;  and,  in  the  same  way,  all  the  elements  of  the  change  of 

motion  may  be  definitely  ascertained. 

II. 

EQUATIONS    OP    MOTION    AND    REST. 

18.  If,  instead  of  the  given  forces,  each  body  were  acted  upon 

by  a  force  in  the  direction  of  its  motion,  and  of  such  an  intensity  as 

to  produce  the  exact  change  of  velocity  which  it  undergoes,  this 

new  system  of  forces  would  precisely  correspond  to  that  actually 

imparted  to  the  moving  bodies,  and  would  be  the  exact  equivalent 

of  the  given  system  of  forces.     Let 
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vi>  v2?  ?,3?  &c-  denote  the  velocities  of  the  bodies; 

dsx,  ds2,  ds3,  &c.,  the  distances  by  which,  in  consequence  of 

the  proposed  arbitrary  motion  of  the  preceding  section, 

the  bodies  advance  in  the  actual  direction  of  this  motion ; 

and  then  from  (43) 

Dtvx,  DtVz,  Dtvz,  &c,  are  the  intensities  of  the  new  forces 

relatively  to  the  unit  of  mass. 

The  whole  power  communicated  by  the  new  system  of  forces 

with  the  proposed  motion  becomes,  then, 

21m1Dtv1dsl  =  nhDt^h  -f-  m2Dtv2ds2  -j-  &c, 

and  it  must,  therefore,  be  equal  to    the    expression    (713)    of  the 

power  communicated  by  the  given  forces.     Hence, 

S[  mxFx  8fx  =  2X  mx  Dt  i\  dsx , 

or  by  transposition 

Z1ml{Dtvlds1—Z'F1df1)  =  o. 

When  the  system  is  at  rest,  this  equation  becomes 

19.  The  equation  (818)  in  the  case  of  motion,  or  the  equation 

(820)  in  the  case  of  rest,  although  it  appears  to  be  a  single  equation, 

involves  in  fact  as  many  equations  as  there  are  distinct  elements  of 

motion  or  rest  in  the  system  of  bodies.  For  every  such  element 

gives  a  different  set  of  values  of  dfl}  df[,  df2,  &c,  ds1}  ds2,  &c,  which, 

substituted  in  (818)  or  (820),  produce  a  corresponding  equation. 

These  equations,  therefore,  involve  all  the  necessary  conditions  of 

motion  or  rest  in  every  mechanical  problem.  All  that  remains, 

then,  is  to  determine,  by  geometrical  analysis,  the  various  elements 

of  motion  or  rest,  and  to  integrate  and  interpret  the  algebraical 
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equations,  into  which  (818)  and  (820)  are  finally  decomposed.  The 

Mecanique  Analytique  of  the  ever-living  Lagrange  contains  the  general 

forms  of  investigation  with  unequalled  elegance  and  perspicuity. 

But  the  special  modes  of  analysis,  which  are  peculiarly  adapted  to 

the  illustration  and  development  of  particular  problems,  have  been 

too  much  neglected,  and  the  attention  of  }^outhful  explorers  is 

earnestly  invited  to  this  unbounded  field  of  research. 

=>♦< 

CHAPTER   IV. 

ELEMENTS    OF   MOTION. 

MOTION    OF    TRANSLATION. 

§  20.  A  single  material  point  may  be  moved  to  an  infinitesimal 

distance  in  any  direction,  which  may  be  defined  by  either  of  the 

methods  known  to  geometers,  by  the  reference,  for  instance,  to  the 

directions  of  three  mutually  perpendicular  axes.  By  the  known 

theory  of  projections,  [Note  B,)  the  distance  by  which  the  point 

advances  in  the  direction  of  its  actual  motion,  or  in  any  other  direc- 

tion, may  be  fully  determined  from  the  distances  which  it  advances 

in  these  three  directions.  The  three  distances,  moved  in  the  direc- 

tions of  the  axes,  which  are  simply  the  projections  of  the  proposed 

motion  upon  the  three  axes,  are  the  three  independent  elements  of 

motion  which  completely  define  the   elementary  motion  of  the  single  point. 
2 
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Thus  if 

dp  denotes  the  proposed  elementary  motion,  if 

P>  p  P>    denote  the  angles  which  this  motion  makes  with  the 

three  mutually  perpendicular  axes,  called  the  axes  of  x, 

y,  and  g,  and 
dx,  dy,  dz,  the  projections  of  dp  upon  the  axes, 

the  expressions  for  these  projections  are, 

dx  =  cos  P .  dp, 

dy  —  cos*,  dp, 

ds  =  co&P  .dp. 

If,  in  general, 

P  denotes  the  angle  which  the  directions  of  p  and  q  make 

with  each  other,  the  distance  by  which  the  point 

advances,  in  consequence  of  the  proposed  motion,  in 

the  direction  of/  is,  by  the  theory  of  projections, 

df  =  cos  P, .  dp 

—  cos  * .  dx  -I-  cos  * .  df/  -4-  cos-' .  dz x        i         y  z 

=  J£\.  cos*  .dx  : 
in  which 

JSX  denotes  the  sum  of   all  the  similar  terms  obtained  by  pro- 
ceeding from  one  axis  to  each  of  the  others. 

21.  The  most  important  of  all  the  elementary  motions  of  a 

system  of  bodies  are  those  which,  being  independent  of  the  peculiar 

constitution  of  the  system,  may  be  common  to  all  systems.     Such 



—  11  — 

motions  must  be  possible,  even  if  the  bodies  which  compose  the  sys- 

tem, do  not  change  their  mutual  positions,  but  are  so  rigidly  fixed 

that  the  whole  may  be  regarded  as  one  solid  body.  It  will  be 

shown  that  there  are  but  two  distinct  classes  of  such  motions, 

namely,  those  of  translation  and  those  of  rotation. 

22.  The  motion  of  translation  is  that  by  which  all  the  points  of 

a  body,  or  system  of  bodies,  are  transported  through  the  same  dis- 

tance in  the  same  direction.  The  projections  of  an  elementary 

translation  upon  three  rectangular  axes  are  given  by  equations 

(1010_n),  while  (102i),  is  the  expression  of  the  distance  by  which  the 

system,  or  any  one  of  its  bodies,  advances  in  any  direction,  such  as 

that  of  /,  by  reason  of  the  proposed  translation. 

23.  Any  number  of  different  elementary  translations  may  be 

supposed  to  be  given  at  the  same  time  to  a  system,  and  the  result- 

ing motion  will  be  such  an  elementary  translation,  that  its  projec- 

tion, estimated  in  any  direction,  will  be  the  sum  of  the  projections 

of  the  elementary  translations  estimated  in  the  same  direction. 

Two  coexistent  elementary  translations  may  be  combined  geo- 

metrically by  setting  off  from  any  point  two  lines  of  the  same 

length  with  the  elementary  motions,  and  in  the  same  direction  with 

them ;  and  if  a  parallelogram  is  described  upon  these  two  lines  as 

sides,  the  diagonal,  which  is  drawn  from  the  given  point,  will  rep- 

resent in  distance  and  direction  the  resulting  elementary  transla- 
tion. 

In  the  same  way  the  geometrical  resultant  of  the  combination 

of  three  elementary  translations  may  be  represented  by  the  diago- 

nal of  a  parallelopiped  described  upon  the  lines  which  represent  the 

component  translations.  But  this  parallelopiped  vanishes  when  the 

three  lines  are  in  the  same  plane. 
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II. 

MOTION     OF    KOTATION. 

§  24.  The  motion  of  rotation  is  that  by  which  all  the  points  of 

a  body  or  system  of  bodies  turn  about  a  fixed  line  in  the  body, 

which  line  is  called  the  axis  of  rotation.  If  one  stands  with  his  feet 

against  the  axes  of  rotation,  and  his  body  perpendicular  to  it,  and 

faces  in  the  direction  of  the  rotation,  the  positive  direction  of  the 

axis  of  rotation  is,  in  this  treatise,  regarded  as  lying  upon  his  right 

hand,  and  its  negative  direction  upon  his  left  hand.  It  will  be  found 

convenient  to  represent  a  rotation  geometrically  by  a  distance  pro- 

portional to  the  elementary  angle  of  rotation,  set  off  upon  the  posi- 

tive direction  of  the  axis  of  rotation  from  any  point  taken  at  pleas- 
ure in  the  axis.     If 

d6  denotes  the  elementary  angle  of  rotation,  and  r  the  distance 

of  a  point  of  the  body  from  the  axis  of  rotation  ; 

rd&  is  the  elementary  distance  through  which  the  point  moves 

in  consequence  of  the  rotation. 

The  form  in  which  the  subject  of  rotation  will  be  here  pre- 

sented, is  not  greatly  modified  from  that  which  it  has  finally 

assumed  in  Poinsot's  admirable  exposition  of  the  "  Theory  of  the 

Motation  of  Bodies"  as  it  is  printed  in  the  additions  to  the  Connais- 
sance  des  Temps  for  1854. 

25.  When  a  body  rotates  about  an  axis,  it  is,  in  consequence  of  this 

rotation,  simultaneously  rotating  about  any  other  axis  which  passes  through 

the  same  point,  with  an  angle  of  rotation  ivhich  is  represented  by  the  'pro- 
jection upon  this  neiv  axis  of  the  line  ivhich  represents  the  original  angle  of 

rotation. 

For  by  the  angle  of  rotation  6  about  the  axis  0 A  (fig.  1),  the 
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point  P  of  the  axis  OB,  which  is  at  the  distance 

r  =  PM 

from  the  axis  OA,  is  moved  through  the  distance  r6.  Although 

every  point  of  the  axis  OA  is  actually  at  rest,  it  has  with  respect  to 

P,  a  relative  motion,  which  is  the  negative  of  that  of  P.  A  rota- 

tion $'  about  the  axis  OB  gives  the  point  N  of  the  axis  OA,  which 
is  in  the  plane  drawn  through  P  perpendicular  to  OB,  and  at  the 
distance 

r'  =  PN 

from  the  axis  of  OB,  a  motion  through  the  distance  /&'  taken  nega- 
tively. This  rotation  is,  then,  the  same  with  that  which  the  actual 

rotation  produces  about  the  axis  OB,  if 

or  t  =  tj=  cos  MPN a  r 
=  cos  A  OB; 

that  is,  if  &'  is  equal  to  the  projection  of  6  upon  OB. 
26.  Three  simultaneous  elementary  rotations  about  three  axes,  ivhich 

pass  through  the  same  point,  and  are  not  in  the  same  plane,  are  equivalent 

to  a  single  rotation  about  the  diagonal  of  a  parallelopiped,  of  ivhich  the  three 

lines  representing  the  rotations  are  the  sides,  and  the  length  of  the  diagonal 

represents  the  angle  of  elementary  rotation. 

For  the  algebraic  sum  of  the  projections  of  the  sides  of  the 

parallelopiped  upon  any  line  perpendicular  to  its  diagonal  is  zero, 

and,  therefore,  there  is  no  rotation  about  any  such  line.  Hence  the 

diagonal  is  stationary,  that  is,  it  is  the  axis  of  rotation.  The  whole 

amount  of  rotation,  being  the  sum  of  the  partial  rotations  about  the 

diagonal  which  arise  from  the  several  rotations  about  the  sides,  is 

represented  by  the  sum  of  the  projections  of  the  sides  upon  the 
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diagonal,  which  is,  by  the  theory  of  projections,  equal  to  the  diago- 
nal itself. 

27.  In  the  same  way,  two  simultaneous  rotations  about  the 

sides  of  a  parallelogram  may  be  combined  into  a  single  rotation 

about  the  diagonal.  In  short,  simultaneous  elementary  rotations  about 

axes  which  cat  each  other  may  be  combined  in  the  same  way  as  elementary 
translations. 

28.  To  investigate  the  distance  by  which  a  given  rotation 

causes  any  point  of  a  body  or  system  to  advance  in  a  given  direc- 
tion, as  that  of  /  ;  let 

d&  be  the  elementary  angle  of  rotation  about  the  axis  of  p  and 

/  the  perpendicular  let  fall  from  the  point  upon  the  axis 
of  rotation. 

Let  a  line  be  drawn  through  the  given  point,  parallel  to  the 

projection  of/  upon  a  plane,  which  is  perpendicular  to  the  axis  of 

rotation,  and  let 

q  be  the  perpendicular  let  fall  upon  this  line  from  the  point  in 

which  /  meets  the  axis  of  rotation  ;  and 

~  the  angle  which  /  makes  with  the  direction  in  which  the 

point  is  moved  by  the*  elementary  rotation. 

The  distance  by  which  the  point  advances  in  the  direction 

of /is 

d/=/cos  %M  =  /cos  e,  sin  £.<M 

=  qsmP.dd, 

in  which  o   should  be  taken  positively  when  the  point  is  moved 

towards  the  positive  direction  of  /. 

29.  If  three  rectangular  axes  are  drawn  through  any  point 

of  the  axis  of  rotation,  and  if 
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d6x,  d&y,  d6z  are  the  projections  of  d&  upon  these  axes,  the  dis- 

tance by  which  the  point  (x,  y,  z)  is  moved  in  the  direc- 
tion of  the  axis  of  x,  is 

dx  =  yd&z  —  sddy 

=  (?/cos^ —  zcosp)  d& W  Z  y) 

=  (cos  r  cos  P  —  cos  r  cos  P)  rdd y       z  z       y 

=  (cos  r  cos P  —  cos  r  cos  p )  cosec  r . rd$ -         y  z  z  y '  p 

=  (cos  r  cos-^  —  cos  r  cos^)  rd&. y       z  z       y 

X 

There  are  similar  expressions  for  the  distances  by  which  the 

point  advances  in  the  directions  of  the  axes  of  y  and  z,  which  may 

be  found  by  advancing  each  of  the  letters  x,  y,  z,  and  x  to  the  fol- 

loAving  letter  of  the  series. 

30.  The  two  last  members  of  equation  (155)  divided  by  r'dd 
give  the  following  theorem ; 

cos  d  =  cos  r  cos  P  —  cos  r  cos^, 
x  y  z  z  y' 

in  which  the  direction  of  &  is  that  of  the  perpendicular  to  the  com- 

mon plane  of  /  and  p,  and  it  is  taken  upon  that  side  of  the  plane 

for  which,  a  positive  rotation  about  it,  would  correspond  to  a 

motion  through  the  acute  angle  from  /  to  p. 

31.  If  there  were  another  system  of  rectangular  axes,  xf,  y', 
and  s,  equation  (1520)  applied  to  them  would  give 

cos     =  cos  u  cos     —  cos  y  cos    . x  y  z  z  y 

In  this  equation  each  of  the  letters  x,  y,  z,  and  x  might  be 

advanced  to  the  subsequent  letter  of  the  series,  as  well  as  each  letter 
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of  the  series  x',  yr,  z' ,  and  x' .     In  this  way  eight  other  equations 
might  be  found  similar  to  equation  (1528). 

III. 

COMBINED    MOTIONS    OF    ROTATION    AND    TRANSLATION. 

32.  An  elementary  rotation,  combined  with  an  elementary  translation 

in  any  direction,  ivhich  is  perpendicular  to  the  axis  of  rotation,  is  equivalent 

to  an  equal  elementary  rotation  about  an  axis  ivhich  is  parallel  to  the  origi- 

nal axis  of  rotation.  The  position  of  the  new  axis  is  determined  by  the  con- 

dition that  each  of  its  points  is  carried  by  the  original  elementary  rotation  as 

far  as  by  the  elementary  translation,  but  in  an  opposite  direction. 

For  the  given  motions  cancel  each  other's  action  upon  each 
point  of  the  new  axis,  and  leave  it  stationary ;  while  the  original 

axis  advances  with  the  elementary  translation  by  the  exact  dis- 

tance which  corresponds  to  the  elementary  rotation  about  the  new 

axis.  The  common  plane  of  the  two  axes  is  perpendicular  to  the 
direction  of  the  translation. 

33.  Any  simultaneous  elementary  rotations  about  axes  parallel  to  each 

other  are  equivalent  to  a  single  rotation,  equal  to  their  sum,  and  about  an  axis 

parallel  to  the  given  axes,  combined  with  an  elementary  translation  equal  to 

the  motion  ivhich  any  point  of  the  new  axis  receives  from  their  simultaneous 
action. 

This  is  a  simple  deduction  from  the  preceding  proposition. 

34.  Let  there  be  three  rectangular  axes,  such  that  the  new 

axis  of  rotation  may  be  that  of  z  ;  let 

x\ilf\)  xi>  Uii  &C-?  be  the  points  in  which  the  original  axes  cut 

the  plane  of  xy  ;  and  let 

d&u  d&2,  &c,  be  the  elementary  angles  of  rotation  about  these 
axes. 
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The  elementary  rotation  about  the  axis  of  z  is 

The  elementary  translations  in  the  directions  of  the  axes  of  x 

and  y  are  by  (1219) 

dy0  =  —  2±  xx  dd  1 . 

The  distances  through  which  any  point  (x,  y,  z)  is  carried  for- 
ward in  the  directions  of  the  axes,  are 

dx  =  dx0  —yd A  =  21y1d&1  —  y  21d&1, 

dy  =  dy0-\-z$&  =  —  21x1d61-\-x21d61. 

The  points  are,  therefore,  at  rest  for  which 

0  =  dz0—ydG  =  21y1d$1—y21d61, 

0  =  Sy0  -j-  xdd  =—2t  x,d6x  -f-  z21d$1. 

These  are,  therefore,  the  equations  of  the  axis  of  rotation,  an  elementary 

rotation  about  which,  equal  to  the  sum  of  all  the  elementary  rotations,  is 

equivalent  to  the  combination  of  all  the  elementary  rotations. 

35.  If  the  original  elementary  rotations  are  all  equal,  and  if 

there  are  n  axes  of  rotation,  the  equations  (172)  and  (17n)  become 

d6==nd6lt 

dx=(21y1  —  ny)  d^, 

dy  =  (—  2 j  xx  -\-  n x)  d  6X . 

The  equations  (17i6)  give  for  the  single  axis  of  rotation 

y=— >    • 

n 

36.  If  any  of  these  rotations  are  about  an  axis  lying  in  the 

opposite  to  the  assumed  direction,  they  may  be  regarded  as  nega- 
3 
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tive  rotations  about  axes  having  the  same  direction  as  the  assumed 

one,  and  may  be  combined  algebraically  in  the  preceding  sums. 

37.  When  the  second  member  of  equation  (172)  vanishes,  the 

resulting  rotation  disappears,  and  the  given  elementary  rotations 

are  equivalent  to  the  elementary  translation  defined  by  equa- 
tions (176). 

38.  Two  equal  rotations  about  axes,  which  are  parallel,  but 

have  opposite  directions,  constitute  a  combination  which  Poinsot 

has  called  a  couple  of  rotations. 

A  couple  of  elementary  rotations  is,  therefore,  equal  to  an  elementary 

translation  in  a  direction  perpendicular  to  the  common  plane  of  the  axes, 

and  equal  to  the  product  of  the  distance  between  the  axes  multiplied  by  the 

elementary  angle  of  rotation. 

39.  Any  simultaneous  elementary  motions  of  rotation  and  translation 

are  equivalent  to  a  single  elementary  rotation  about  an  axis,  combined  ivith 

an  elementary  translation  in  the  direction  of  the  axis  of  rotation. 

For  each  rotation  may  be  resolved  into  a  translation  and  a 

rotation  about  an  axis  passing  through  any  assumed  point.  But  all 

the  elementary  rotations  about  axes  passing  through  the  same  point 

are  equivalent  to  a  single  rotation  about  an  axis  passing  through 

the  point,  and  all  the  translations  are  equivalent  to  a  single  transla- 

tion. The  single  translation  may  be  resolved  into  two  translations, 

of  which  one  is  parallel,  and  the  other  perpendicular  to  the  single 

axis  of  rotation.  The  translation,  which  is  perpendicular  to  the 

axis  of  rotation,  combined  with  the  rotation,  is  equivalent  to  a  sin- 

gle rotation  about  an  axis,  parallel  to  the  single  axis,  and,  therefore, 

having  the  same  direction  with  the  remaining  translation. 

40.  Every  possible  motion  of  a  rigid  system  or  body  is  equivalent  to 

a  combination  of  the  motions  of  translation  and  rotation. 

This  is  evident,  if  it  can  be  shown  that,  by  such  a  combination 

of  motions,  any  three  points,  A,  B,  and  C,  of  the  system,  can  be  car- 
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ried  to  any  positions,  A,  B',  and  C,  in  which  it  is  possible  for  them 
to  be  placed.  For  three  points  of  a  rigid  system  not  in  the  same 

straight  line  completely  determine,  by  their  position,  that  of  the 

whole  system.  Now,  by  a  translation  of  the  system,  equal  to  that 

by  which  A  might  be  directly  moved  from  A  to  Ar,  the  point  A  is 
actually  brought  to  the  position  A.  By  a  subsequent  motion  of 

rotation  about  an  axis,  which  is  "perpendicular  to  each  of  the  lines 

AB  and  A  B',  the  point  B  may  be  moved  to  Br ;  and  then  by  a 

rotation  about  AB'  the  point  O  may  be  carried  to  C.  Hence  the 
whole  motion  is  accomplished  by  one  translation  and  two  rotations. 

Every  elementary  motion  of  a  rigid  system  must  then  be 

equivalent  to  a  single  rotation  about  an  axis  and  a  translation  in 

the  direction  of  the  axis  of  rotation.  This  motion  is  perfectly  rep- 

resented by  that  of  the  screw,  whose  helix  causes  it  to  advance  in 

the  direction  of  the  axis  about  which  it  is  turning. 

41.  During  each  instant  of  its  motion,  a  rigid  system  rotates 

about  an  axis,  which  is  called  the  instantaneous  axis  of  rotation.  This 

axis  is  generally  varying  its  position  in  the  system  and  in  space 

from  one  instant  to  another,  which  renders  it  difficult  to  form 

a  distinct  conception  of  the  nature  of  the  corresponding  motion  of 

the  system. 

42.  In  attempting  to  conceive  of  the  motion  of  a  rigid  system, 

it  is  expedient,  at  first,  to  neglect  the  translation  in  the  direction  of 

the  axis  of  rotation,  and  to  assume  that  the  motion  is  solely  that 

of  rotation.  The  successive  positions  of  the  axis  of  rotation  in  the 

system  form  by  their  union  a  surface  which  tarns  with  the  system; 

and  its  successive  positions  in  space  form  another  fixed  surface.  In 

the  motion  now  considered,  the  moving  surface  rolls  on  the  fixed 

surface  without  sliding,  and  carries  the  system  with  it. 

43.  If  the  axis  of  rotation  does  not  move  perpendicularly  to 

itself  each  of  these  surfaces  is  evidently  a  developable  surface,  and 
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in  the  act  of  rolling  the  line  of  retrogression  of  the  one  falls  upon 

that  of  the  other;  so  that  these  two  lines  are  of  the  same  length. 

Upon  the  surfaces,  developed  into  a  plane,  the  two  lines  of  retro- 

gression will  be  precisely  alike. 

In  combining  with  this  rotation  the  translation  in  the  direction 

of  the  axis  of  rotation,  the  surface,  generated  bj  the  instantaneous 

axis  in  the  moving  system,  remains  unchanged.  But  the  fixed  sur- 

face, generated  by  the  instantaneous  axis,  is  changed ;  it  is  still  a 

developable  surface  obtained  from  that  in  which  the  translation  is 

neglected,  by  adding  to  each  element  of  the  arc  of  the  curve  of 

retrogression,  the  elementary  translation  in  the  direction  of  the  axis 

of  rotation.  In  the  actual  motion,  the  moving  surface  rolls  upon 

the  fixed  surface,  and  glides  simultaneously  in  the  direction  of  the 

line  of  contact,  so  as  to  keep  the  curves  of  retrogression  constantly 
in  contact. 

In  this  general  case,  the  whole  length  of  the  arc  of  the  fixed 

curve  of  retrogression  is  equal  to  that  of  the  moving  curve  aug- 

mented by  the  whole  amount  of  translation  in  the  direction  of  the 

axis  of  rotation. 

When  the  elementary  translation  is  equal  to  the  elementary 

arc  of  the  moving  curve  of  retrogression,  but  lies  in  the  opposite 

direction,  there  is  a  corresponding  cusp  in  the  fixed  curve  of  retro- 

gression. 
A  point  of  inflection  in  the  curves  of  retrogression  generally  cor- 

responds to  a  change  in  the  direction  of  the  rotation.  A  similar 
combination  of  the  translation  with  the  rotation  can  be  introduced 

into  the  general  case  of  motion. 
44.  When  either  of  the  surfaces  of  the  instantaneous  axis  is 

a  cone,  the  curve  of  retrogression  is  reduced  to  a  point  which  is  the 

vertex  of  the  cone.  When  both  of  the  surfaces  are  cones,  there  is  no 

translation  in  the  direction  of  the  axis. 
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When  either  of  the  surfaces  is  a  cylinder,  both  surfaces  must 

be  cylinders;  and  the  lines  of  retrogression,  removing  to  an  infinite 

distance,  cannot  be  used  for  guiding  the  motion  of  translation. 

But  in  this  case,  a  section  may  be  made  of  one  of  the  cylinders  per- 

pendicular to  its  axis,  and  in  the  actual  motion  the  moving  cylinder 

will  move  so  as  to  keep  the  point,  in  which  the  perimeter  of  this 

section  touches  the  other  cylinder,  upon  a  curve  properly  drawn 

upon  that  cylinder. 

45.  The  general  motion  of  a  rigid  system  may  be  conceived  as 

a  translation,  equal  to  that  of  any  one  of  its  points  assumed  at  will, 
combined  with  a  rotation  about  an  instantaneous  axis  of  rotation 

passing  through  the  point.  If  the  translation  is  neglected,  the  rota- 

tion is  effected  as  in  §  42  by  rolling  a  cone,  of  which  the  assumed 

point  is  the  vertex,  and  which  carries  the  system  with  it,  in  its 

motion,  about  a  fixed  cone,  of  which  the  same  point  is  the  vertex. 

The  translation  may  be  simultaneously  effected  by  moving  the  two 

cones  in  space,  with  a  translation  equal  to  that  which  belongs  to 

their  vertex  in  the  actual  motion  of  the  system. 

46.  For  all  the  points  of  the  instantaneous  axis  in  each  of  its 

positions,  the  corresponding  centres  of  greatest  curvature  of  either 

of  the  conical  surfaces  which  it  describes,  are  all  upon  the  same 

straight  line  passing  through  the  vertex. 

In  the  case  of  the  right  cone,  or  of  the  right  cylinder,  the  axis 

of  revolution  is  the  line  of  the  centres  of  greatest  curvature.  In  all 

these  investigations  the  plane  may  be  regarded  either  as  a  cylinder 

of  infinite  radius,  or  as  a  cone,  of  which  the  angle  at  the  vertex  is 

equal  to  two  right  angles. 

47.  The  elementary  rotation  of  the  system  may  be  conceived 

as  decomposed  into  two  elementary  rotations  about  the  lines  of  the 

centres  of  greatest  curvature  as  axes  of  rotation.  By  the  rotation 

about  the  line,  which  unites  the  centres  of  the  fixed  surface,  the 
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instantaneous  axis  receives  its  elementary  motion  in  space,  and  is 

carried  to  its  proper  position  upon  the  fixed  surface.  By  the  rota- 

tion about  the  line  which  unites  the  centres  of  the  moving  surface, 

the  system  receives  that  additional  rotation  which  is  required  to 

turn  the  moving  surface  into  that  position  in  which  it  may  have  the 

proper  line  of  contact  with  the  fixed  surface.  Each  of  these  rota- 

tions produces  a  sliding  of  the  moving  upon  the  fixed  surface  ;  but 

as  the  sliding  produced  by  the  one  is  just  equal  and  opposite  to  that 

produced  by  the  other  rotation,  the  two  rotations  cancel  each 

other's  action  in  this  respect,  and  there  is  no  sliding  in  the 
combined  motion,  but  a  simple  rolling  of  one  surface  upon  the 
other. 

48.     Let 

af  be  the  acute  angle  which  the  instantaneous  axis  of  rota- 
tion makes  with  the  line  of  the  centres  of  curvature 

of  the  fixed  surface  ; 

am  that  which  it  makes  with  the  line  of  the  centres  of  cur- 

vature of  the  moving  surface,  this  angle  being  positive 

when  the  two  lines  of  the  centres  are  on  opposite 

sides  of  the  instantaneous  axis,  and  negative,  when 

they  are  upon  the  same  side  ; 

d  a*  the  elementary  angle  by  which  the  instantaneous  axis 

changes  its  direction ; 

d  &f  the  elementary  angle  of  rotation  about  the  line  of  cen- 
tres of  the  fixed  surface  ;  and 

d  6m  the  elementary  angle  of  rotation  about  the  line  of  cen- 

tres of  the  moving  surface. 

Since  the  instantaneous  axis  must  be  carried  forward  by  the 

rotation  about  the  fixed  axis,  and  backward  by  the  rotation  about 



the  moving  axis  just  as  far  as  its  actual  change  of  position,  its  ele- 

mentary angle  of  change  of  direction  is 

d  w  =  d  6f.  sin  af=  d  &m .  sin  am . 

But  the  combination  of  the  two  rotations  about  these  axes 

gives  the  actual  rotation  about  the  instantaneous  axis,  and  there- 
fore, 

d 6  =  d  6f.  cos  cc/-\-  d  Qm.  cos  am 

=  (cotay-j-cotoj^)  da> _sin  Ov+Oftrc 

sin  «y  sin  am 

49.  When  the  surfaces  described  by  the  instantaneous  axis  are 

cylinders,  let 

(jy  and  Qm  be  the  respective  radii  of  greatest  curvature  of  the 

fixed  and  moving  surfaces  at  any  point  of  their  mutual 

contact ;  and 

dp  the  elementary  distance  which  the  instantaneous  axis  moves 

in  a  direction  perpendicular  to  itself. 

The  conditions  of  the  motion  of  the  instantaneous  axis  give  the 

equations 

in  which  the  upper  sign  corresponds  to  the  case  where  the  lines  of 

the  centres  of  curvature  are  upon  opposite  sides  of  the  instanta- 

neous axis,  and  the  lower  sign  to  that  in  which  they  are  upon  the 
same  side.     The  rotation  about  the  instantaneous  axis  is 

d6  =  d&f+d6m 
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IV. 

SPECIAL    ELEMENTS    OF    MOTION   AND    EQUATIONS    OF    CONDITION. 

50.  The  variation  of  each  independent  element  of  position  of 

a  system  gives  an  independent  element  of  motion.  Bnt  the  ele- 

ments of  position  are  various,  and  must  be  selected  in  each  case 

with  special  reference  to  the  problem  under  discussion.  It  often 

occurs  that  parts  of  the  system  are  rigidly  connected ;  such  parts 

are  themselves  rigid  systems,  and  subject  only  to  motions  of  trans- 

lation and  rotation,  and,  therefore,  none  but  such  elements  are 

required  for  the  investigation  of  their  motions. 

Points  of  the  system  are  sometimes  restrained  to  move  upon 

given  surfaces,  and,  in  this  case,  it  may  be  expedient  to  introduce 

elements'  of  position  dependent  upon  the  principal  lines  of  curva- 
ture of  these  surfaces,  or  elements,  in  reference  to  which  the  sur- 

faces are  peculiarly  simple  or  symmetrical.  Points  of  the  system 

may  be  compelled  to  preserve  simple  geometrical  relations  to  each 

other,  which  may  suggest  appropriate  elements  of  position  to  the 

skilful  analyst;  or  he  may  find  indications  to  direct  his  choice  in 

the  very  nature  of  the  motion  itself. 

51.  It  is  often  desirable  to  adopt  a  combination  of  elements 

of  position  which  are  not  wholly  independent  of  each  other,  but  are 

subject  to  certain  mutual  restrictions.  These  restrictions,  when 

they  are  expressed  algebraically,  are  called  equations  of  condition. 

They  may  assume  the  differential  form  of  equations  between  the 

elementary  motions ;  or  they  may  be  finite  equations  between  the 

elements  of  position,  in  which  case  they  may  be  reduced  by  differ- 

entiation to  equations  between  the  elementary  motions. 

By  means  of  the  equations  of  condition,  as  many  of  the  ele- 
ments of  motion  may  be  determined  in  terms  of  the  rest  as  there 
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are  equations  of  condition ;  and  the  remaining  elementary  motions 

may  be  regarded  as  independent  of  each  other. 

52.  Instead  of  introducing  into  the  equations  (818)  and  (820)  of 

motion  and  rest  the  special  values  of  dsly  ds2,  &c,  dfly  df2,  &c,  for 

each  particular  element  of  motion,  their  general  values  may  be 

found  in  terms  of  all  these  elements.  When  the  elementary 

motions  are  wholly  independent,  their  coefficients  in  these  equa- 

tions give,  when  they  are  equalled  to  zero,  the  same  equations 

which  would  have  been  obtained  by  the  special  investigations. 

But  when  the  elements  are  not  independent,  all,  except  the  inde- 

pendent elements  can  be  eliminated  by  means  of  the  values  given 

by  the  equations  of  condition. 

The  equations  (81S)  and  (820)  of  motion  and  rest,  on  account  of 

their  differential  form,  are  necessarily  linear  in  reference  to  the  ele- 

mentary motions ;  and  the  differential  equations  of  condition  are 

likewise  linear.  The  proposed  elimination  may  therefore  be  con- 

ducted by  the  method  of  multipliers.  By  this  process  each  differential 

equation,  multiplied  by  an  unknown  quantity,  is  to  be  added  to  the 

given  equation  of  motion  or  rest.  The  unknown  multipliers  are  to 

be  determined  by  the  conditions  that  the  coefficients  of  the  elemen- 

tary motions,  which  are  to  be  eliminated,  become  equal  to  zero. 

Since  the  remaining  elementary  motions  are  independent  of  each 

other,  their  coefficients  must  also  be  equalled  to  zero.  In  the  sum, 

therefore,  obtained  by  the  addition  of  the  equations,  each  of  the 

coefficients  of  the  elementary  motions  is  equal  to  zero.  The  num- 

ber of  unknown  quantities  is  increased  in  this  process  by  that  of  the 

unknown  multipliers ;  but,  because  there  are  as  many  equations  of 

condition  as  there  are  multipliers,  the  whole  number  of  equations, 

including  the  equations  of  condition,  in  their  finite  form,  is  just 

sufficient  to  determine  the  values  of  the  multipliers  and  of  all  the 

elements  of  position. 
4 
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53.  Let 

be  one  of  the  equations  of  condition  in  its  finite  form ;  and  let  its 
differential  form  be 

dLx  =  0. 
Let  also, 

I  be  the  unknown  multiplier  by  which  it  is  to  be  multiplied. 

The  sum  obtained  by  adding  the  similar  products  of  all  the  equa- 

tions of  condition  to  equation  (818)  or  (820)  is 

2[m1F1df1-\-21l1dX1  =  Q, 

which  is  the  equation  of  motion  or  rest,  and  in  which  the  general 

values  of  dsl7  dfx,  &c,  are  to  be  substituted,  and  the  coefficient  of 

each  elementary  motion  is  to  be  equalled  to  zero. 

54.  Each  equation  of  condition  becomes  the  equation  of  a 

surface,  to  which  any  one  of  the  points  whose  elements  of  position 

occur  in  the  equation  is  restricted,  provided  that,  for  the  moment, 

the  variations  of  all  the  other  elements  are  neglected.  Since  the 

point  is  restricted  to  move  upon  the  surface,  it  cannot  move  in  the 

direction  of  the  normal  to  the  surface.  Let  a  system  of  three  rec- 

tangular axes  be  adopted,  and  let 

iVbe  the  normal  to  the  surface. 

Its  variation,  arising  from  the  variation  of  coordinates,  which  may 

be  regarded  as  the  elements  of  position  of  the  point,  is 

If  the  equation  of  the  surface  is  (262),  with  the  omission  of  the  num- 
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bers  written  below,  which  may  be  neglected  in  the  general  discus- 
sion, its  variation  is 

dL  =  ZxDxUx. 

Let,  then, 

and  the  angle,  made  by  the  normal  with  one  of  the  axes,  is  given 

by  the  equation 

X__DXL cos^—^-; 

which  substituted  in  (2629)  gives 

ZxDxL8x       8L 

djsr-. 

M  M 

Hence  the  equation  of  condition  with  its  multiplier  may  be  writ- 
ten in  the  form 

IdL  =  X3IdJY=  0  ; 

and  this  form  may  be  substituted  in  the  equations  (2612)  and  (2613) 
of  motion  and  rest. 
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CHAPTER   V. 

FORCES   OF   NATURE. 

I. 

EQUILIBRIUM,   AND    THE   POSSIBILITY    OF   PERPETUAL   MOTION. 

§  55.  It  appears,  at  first  sight,  to  be  inconsistent  with  the 

assumed  spiritual  origin  of  force,  that  the  principal  forces  of  nature 

reside  in  centres  of  action,  which  are  not  thinking  beings,  but  parti- 

cles of  matter.  The  capacity  of  matter  to  receive  force  from  mind 

in  the  form  of  motion,  contain  and  exhibit  it  as  motion,  and  commu- 

nicate it  to  other  matter,  under  fixed  laws,  is  not,  however,  less  dim- 

cult  or  more  conceivable  than  the  capacity  to  receive  and  contain  it 

in  a  more  refined  and  latent  form,  from  which  it  may  become  mani- 

fest under  equally  fixed  laws.  It  is  only,  indeed,  when  force  is  thus 

separated  from  mind,  and  placed  beyond  the  control  of  will,  that  it 

can  be  subject  to  precise  laws,  and  admit  of  certain  and  reliable 

computation. 

56.  The  laws  of  the  development  of  power  in  nature  are  of 

two  classes.  In  the  one  class,  the  forces  depend  solely  upon  the 

relative  positions  of  the  bodies,  and  may  be  called  fixed.  In  the 

other  class,  the  forces  depend,  not  only  upon  the  positions  of  the 

bodies,  but  also  upon  their  actual  state  of  power,  especially  upon 

the  velocities  and  directions  of  their  motions ;  and  these  forces  may 
be  called  variable. 

57.  The  most  fruitful  and  enlarged  view  of  the  fixed  forces  of 
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nature,  and  one  which  peculiarly  corresponds  to  their  laws  of  action 

so  far  as  they  have  been  observed,  is  to  regard  them  as  the  mani- 
festations of  the  dynamic  situation  of  the  bodies  which  exhibit  them. 

The  dynamic  situation  depends  solely  upon  the  masses  and  posi- 
tions of  the  bodies;  it  is  a  condition  of  form,  and  its  research  is  a 

problem  of  pure  geometry.  The  algebraic  function  which  embodies 

the  idea  of  the  dynamic  state  is  called  the  potential.  Its  complete 

investigation  and  determination  involves  the  solution  of  all  the 

problems  which  can  arise  in  regard  to  the  power  and  the  conditions 

of  force  of  all  systems,  whether  they  are  at  rest  or  in  motion,  so  far 
at  least  as  the  fixed  forces  of  nature  are  concerned. 

The  amount  of  power  of  a  system  is  not  to  be  inferred  from  its 

situation,  although  there  is  a  certain  measure  of  power  appropriate 

to  that  situation.  It  is  this  latter  power  which  is  expressed  by  the 

potential  of  the  system,  and  expressed  as  a  function  of  all  the  ele- 

ments of  position,  by  which  the  situation  is  defined. 

58.  The  power  of  a  moving  system  increases  or  decreases  with  the 

power  ivhich  belongs  to  its  situation,  and  the  increase  or  decrease  of  its  power 

is  measured  by  that  of  its  potential. 

59.  Hence,  if  a  system  moves  from  a  state  of  rest,  its  power  is 

constantly  equal  to  the  excess  of  its  potential  over  the  initial  value 

of  the  potential ;  and  it  can  never  arrive  at  a  position  in  which  the 

potential  would  be  less  than  its  initial  value.  No  system,  indeed, 

can  move  to  a  situation  in  which  the  potential  would  be  diminished 

more  than  the  initial  power  of  the  system. 

60.  When  a  system  is  in  a  permanent  state  of  rest  which  the 

actual  forces  do  not  tend  to  disturb,  its  dynamic  condition  is  such, 

that  the  power  of  the  system  is  not  changed  by  a  slight  change  of 

position.     Hence, 

The  potential  of  a  system  ivhich  is  in  equilibrium,  is  generally  a  maxi- 

mum or  a  minimum.     The  exceptional  case  of  a  condition  of  indiffer- 
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ence  rarely  occurs  in  nature ;  but  even  this  case  may  be  philosophi- 

cally regarded  as  the  combination  of  a  maximum  and  minimum,  or 
as  the  result  of  several  such  combinations. 

61.  When  a  moving  system  passes  through  a  position  of  equi- 

librium, or  a  position  which  is  one  of  equilibrium  in  reference  to 

the  element  of  position  with  which  the  system  is  changing  its  place, 

the  power  of  the  system  is  either  a  maximum  or  a  minimum,  or  in 
a  condition  of  indifference. 

62.  When  a  system,  in  a  state  of  rest,  is  placed  very  near  the 

position  of  equilibrium,  it  cannot  tend  to  move  away  from  the  posi- 

tion of  equilibrium,  if  the  potential  of  that  situation  is  a  maximum 

relatively  to  the  element  by  which  the  system  is  removed  from 

it ;  and  it  cannot  tend  to  move  towards  the  situation  of  equili- 

brium, if  the  potential  is  a  minimum  for  the  same  element.  On 

this  account  the  equilibrium  is  stable,  in  reference  to  those  elements 

for  which  the  potential  is  a  maximum,  and  it  is  unstable  in  reference 

to  these  elements,  for  which  the  potential  is  a  minimum. 

63.  As  when  a  function  changes  in  consequence  of  the  change 

of  any  one  of  its  variables,  the  maxima  and  minima  succeed  each 

other  alternately ;  in  the  motion  of  a  system,  the  positions  of  stable 

and  unstable  equilibrium,  relatively  to  the  element  of  change  of 

position,  succeed  each  other  alternately.  Situations  of  equilibrium 

of  indifference  may  be  interposed  without  disturbing  the  order  of 

succession  of  the  situations  of  stable  and  unstable  equilibrium.  If 

the  system  returns  to  its  initial  position,  it  must  have  passed 

through  an  even  number  of  such  situations  of  equilibrium,  rela- 

tively to  the  element  of  change  of  position,  half  of  which  must  have 

been  positions  of  stable,  and  the  other  half  positions  of  unstable 

equilibrium.  In  general,  these  situations  will  not  be  positions  of 

absolute  equilibrium,  but  only  such  in  reference  to  the  changing 
element  of  motion. 
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64.  Fixed  forces  might  easily  be  imagined  different  from 

those  of  nature,  and  in  the  action  of  which  the  power  of  a  moving 

system  would  depend  upon  its  previous  situations  as  well  as  upon 

its  actual  position.  With  such  forces  the  increase  or  decrease  of 

power  of  a  system  would  vary  with  the  path  which  it  pursued  in 

moving  from  one  situation  to  another,  and  would  be  greater  by  one 

path  than  by  another.  The  change  of  power  for  each  element  of 

any  given  path,  would  still  be  computed  by  the  process  of  §  17, 

and  thence  the  whole  change  of  power  would  be  obtained  by  inte- 

gration. If  the  motion  of  the  system  were  reversed,  and  it  were 

carried  back  through  the  same  path  to  its  initial  position,  its  initial 

power  would  be  restored.  If,  of  two  courses,  by  which  a  system 

could  move  from  one  situation  to  another,  it  were  forced  to  go  by 

that  through  which  it  would  arrive,  with  the  greater  power  at  its 

final  position,  and  if  it  were  then  made  to  return  to  its  initial  posi- 

tion by  the  other  path,  it  would  return  with  an  increased  power ; 

if  it  were  again  to  move  through  the  same  circuit,  it  would  again 

return  with  an  equal  additional  increase  of  power ;  and,  by  succes- 

sive repetitions  of  this  process,  the  power  might  be  increased  to  any, 
even  to  an  infinite  amount.  Such  a  series  of  motions  would  receive 

the  technical  name  of  a  perpetual  motion,  by  which  is  to  be  under- 

stood, that  of  a  system  which  would  constantly  return  to  the  same 

position,  Avith  an  increase  of  power,  unless  a  portion  of  the  power 

were  drawn  off  in  some  way,  and  appropriated,  if  it  were  desired,  to 

some  species  of  work.  A  constitution  of  the  fixed  forces,  such  as 

that  here  supposed,  and  in  which  a  perpetual  motion  would  be  pos- 

sible, may  not,  perhaps,  be  incompatible  with  the  unbounded  power 

of  the  Creator ;  but,  if  it  had  been  introduced  into  nature,  it  would 

have  proved  destructive  to  human  belief,  in  the  spiritual  origin  of 

force,  and  the  necessity  of  a  First  Cause  superior  to  matter,  and 

would  have  subjected  the  grand  plans  of  Divine  benevolence  to 

the  will  and  caprice  of  man. 
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65.  A  surface,  for  each  of  whose  points  the  potential  has  the 

same  value,  may  be  called  a  level  surface.  A  level  surface  may  be 

drawn  through  any  point  in  space. 

Since  the  potential  of  every  finite  system  of  nature  vanishes 

for  an  infinitely  distant  point,  all  the  level  surfaces  of  nature  are  finite, 

and,  returning  into  themselves,  include  a  space  ivhich  they  wholly  surround, 

with  the  exception  of  those  level  surfaces  for  which  the  potential  is  zero. 

66.  A  material  point,  placed  upon  a  level  surface,  has  no  ten- 

dency to  move  in  the  direction  of  the  surface,  because  there  is  no 

increase  of  power  in  such  direction.  The  tendency  of  a  material  point 

to  motion  is,  therefore,  perpendicular  to  the  level  surface  upon  ivhich  it  is 

placed, 
67.  If  two  level  surfaces  are  drawn  infinitely  near  to  each 

other,  a  material  point,  placed  upon  either  of  them,  tends  to  move  in  the 

direction,  from  the  surface  of  the  less  potential  toivards  the  other,  ivith  a 

force  ivhich  is  measured  by  the  quotient  of  the  difference  of  the  potentials  of 

the  two  surfaces,  divided  by  their  distance  apart. 

Hence,  if  the  surfaces  are,  throughout,  at  the  same  distance 

apart,  the  disposition  to  motion  is  everywhere  the  same. 

If  the  surfaces  were  to  intersect  each  other,  the  tendency  to 

motion  in  the  line  of  intersection  would  be  infinite  ;  but,  since  there 

is  no  such  infinite  tendency  to  motion  in  nature,  each  level  surface  of 

nature  must  be  wholly  included  within  every  other  level  surface,  within  which 

any  portion  of  it  is  included.  For  the  same  reason,  the  potential  in  nature 

is  always  a  continuous  function. 

68.  Within  each  level  surface  of  nature  there  must  be  a  point 

or  points  of  maximum  or  minimum  potential.  A  continuous 

curved  line,  drawn  perpendicularly  to  each  of  the  level  surfaces 

which  it  intersects,  represents  a  line  of  action  or  tendency  to 

motion,  and  every  such  trajectory  must  finally  terminate  in  one  of 

the  included  points  of  maximum  or  minimum  potential.     Each  of 
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these  points  may  then  be  regarded  as  a  centre  of  action,  towards,  or 

from  which,  all  motion  tends  along  the  various  trajectories,  accord- 

ing as  the  point  is  that  of  a  maximum  or  a  minimum  potential. 

69.  If  the  potential  has  a  constant  value  for  any  portion  of  space, 

this  same  constant  value  must  extend  throughout  all  thai  space,  including 

this  portion,  for  which  the  potential  and  all  its  derivatives  are  finite  and  con- 

tinuous functions.  For,  in  order  that  the  potential  may  be  absolutely 

constant  for  any  finite  extent,  however  small,  all  its  derivatives 

must  vanish.  But  it  follows,  from  Taylor's  Theorem,  that  the 
difference  of  the  value  of  the  potential  for  any  portion  of  space,  for 

which  it  is  continuous  and  finite,  as  well  as  all  its  derivatives,  is  a 

linear  function  of  its  derivatives  at  any  point  of  that  space.  The 

difference  of  the  potential,  therefore,  vanishes,  when  all  the  deriva- 

tives vanish  and  the  potential  is  constant. 

The  portion  of  space,  for  which  the  derivatives  are  originally 

assumed  to  be  constant,  must  be  a  solid,  having  the  three  dimen- 

sions of  extension,  in  order  that  this  theorem  be  applicable. 

70.  Throughout  any  such  portion  of  space,  in  which  the 

potential  is  constant,  there  can  be  no  tendency  to  motion  in  any 

direction.  In  such  extent,  therefore,  there  can  be  no  mass  of 

matter,  for  it  is  contrary  to  experience  that  there  should  be  matter 

where  there  are  no  dynamical  phenomena. 

71.  In  all  the  observed  laws  of  material  action,  the  potential, 

which  belongs  to  the  action  of  each  particle  of  matter,  is  finite  and 

continuous,  as  well  as  all  its  derivatives,  for  the  whole  extent  of  space 

exterior  to  the  particle.  Hence,  the  potential  and  its  derivatives, 

for  every  system  of  nature,  are  finite  and  continuous  functions 

throughout  any  portion  of  space  which  contains  no  material  mass. 

72.  Hence,  it  follows,  that  for  every  finite  system  of  nature,  any 

portion  of  space,  in  which  the  potential  is  constant,  must  be  finite,  and 

hounded  on  all  sides  by  material  masses.     This  portion  of  space  cannot 
5 
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extend  to  infinity,  because,  if  it  were  to  have  such  an  extent,  the 

finite  mass,  which  would  be  its  inner  limit,  would  exhibit  no 

external  indication  of  force ;  whereas,  it  is  obvious  that  no  matter 

can  ever  have  been  observed,  except  by  such  a  manifestation  of  its 
existence. 

73.  There  are  forces  in  nature  which  are  temjiorarily  fixed,  and 

for  which  the  potential  may  vanish  throughout  all  space  exterior  to 
the  limit  in  which  the  centres  of  action  are  contained. 

74.  The  difference  between  the  values  of  the  potential  for  any 

two  points  may  be  computed  by  supposing  a  unit  of  mass  to  move 

from  one  point  to  the  other  upon  any  line  taken  at  pleasure,  and 

determining  the  change  of  power  which  it  receives  from  this 

motion.  The  change  of  the  potential  may  be  computed  for  each 

force  separately,  and,  in  making  the  partial  computations,  it  is 

sufficient  to  suppose  the  unit  of  mass  to  move  from  the  level 

surface  of  one  point  to  that  of  the  other,  and  one  of  the  perpen- 

dicular trajectories  may  be  taken  for  the  path  of  this  motion. 

75.  If,  in  any  system, 

F,  F',  &c,  are  the  forces ; 

/,/',  &c,  the  directions  in  which  they  act ;  and 
12  is  the  value  of  the  potential ; 

the   general   expression   of    the    potential   for   any   point   of    the 

system  is 
a  =  2'fFdfi 

in  which  the  limits  of  integration  extend  from  the  values  of/,/',  &c, 
which  correspond  to  the  position  of  the  point,  to  infinity.  The 

expression  for  the  tendency  to  motion  in  any  direction,  as  that  of 

p,  is DpQ  =  Dp2'fFdf. 
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II. 

COMPOSITION   AND    RESOLUTION    OF    FORCES. 

76.  No  phenomenon  is  observed,  in  which  a  single  force  acts 

freely  by  itself.  In  all  cases,  various  forces  are  combined ;  and  it 

is  important,  therefore,  to  ascertain  what  are  the  dynamical  results 
of  such  combinations. 

77.  A  single  force  acts,  at  each  point,  perpendicularly  to  its 

level  surface,  with  an  intensity  which  is  measured  by  the  derivative 

of  the  potential,  taken  with  reference  to  the  element  of  direction  of 

the  force.  The  intensity  of  its  action,  in  any  other  direction,  is 

measured  by  the  derivative,  with  reference  to  the  element  of  that 

direction.  If  another  level  surface  is  drawn  infinitely  near  the  one 

which  passes  through  the  point,  the  action  in  any  direction  is 

inversely  proportional  to  the  length,  intercepted  by  the  surfaces, 

upon  a  straight  line  drawn  in  the  given  direction.  But  the  surfaces 

may,  for  this  purpose,  be  considered  as  reduced  to  their  parallel 

tangent  planes  at  the  given  point  ;  and  the  length,  intercepted 

between  two  parallel  planes,  upon  a  straight  line,  is  proportional  to 

the  secant  of  the  angle  which  the  line  makes  with  the  perpen- 

dicular to  the  plane.  Hence,  the  action  of  a  force  in  the  direction 

of  any  line,  is  proportional  to  the  cosine  of  the  angle  which  it 
makes  with  the  direction  of  the  force. 

If,  then,  upon  a  straight  line  drawn  in  the  direction  of  a  force, 

a  length  is  taken  to  represent  the  intensity  of  the  force,  the  action 

in  any  direction  is  represented  by  the  projection  of  this  length 

upon  that  direction,  or  by  using  the  word  force  for  the  representa- 

tive of  the  force,  the  proposition  becomes,  that  the  action  of  a  force  in 

any  direction  is  the  projection  of  the  force  upon  that  direction. 

78.  When  several  forces  act  upon  a  point,  their  total  action  in 
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any  direction  is  the  algebraic  sum  of  their  projections  upon  that 
direction. 

79.  When  three  forces,  ivhich  are  not  in  the  same  plane,  act  upon  a 

point,  their  combined  action  is  equivalent  to  that  of  a  single  force,  tvhich  is 

represented  in  magnitude  and  direction  by  the  diagonal  of  the  parallelopiped 

constructed  upon  the  three  forces. 

For  the  algebraic  sum  of  the  projections  of  the  forces  upon  any 

direction  perpendicular  to  the  diagonal,  is  zero,  while  that  of  the 

projections  upon  the  diagonal  is  the  diagonal  itself. 

80.  All  the  forces  tvhich  act  upon  a  point,  are  equivalent  to  a  single 

force,  which  is  called  their  resultant.  For  a  single  point  can  only  tend 

to  move,  with  a  certain  intensity,  in  some  one  direction,  however 

various  may  be  the  forces  which  act  upon  it ;  and  any  such 

tendency  to  motion  can  be  produced  by  one  force  acting  upon 

the  point. 
The  actions  of  all  the  forces  in  three  directions  which  are 

perpendicular  to  each  other,  can  be  found  by  §  78 ;  and  these  three 

partial  forces  can  then  be  combined  by  §  79  into  one  force  which 

will  be  the  resultant.  But  the  following  method  of  finding  the 

resultant  illustrates  the  use  which  may  be  made  of  the  level 

surfaces. 

81.  In  considering  the  action  of  a  force  upon  a  fixed  point  in 

space,  the  variable  character  of  the  force  for  other  points  of  space 

may  be  neglected,  and  its  level  surfaces  may  be  regarded  as  parallel 

planes  perpendicular  to  the  direction  of  the  force.  Thus,  it  may  be 

assumed  that 

Ff  is  the  potential  of  the  force  F,  which  acts  in  the  direction 

of/;  for 

Df{Ff)  =  F,  is  the  intensity  of  the  force  ;  and 

Ff  =.  a  constant,  or 

f=  a  constant, 
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is  the  equation  of  a  plane  perpendicular  to  /.     Hence,  the  potential 

of  all  the  forces  which  act  upon  the  point,  is 

If  then 

Pq  is  the  resulting  force  resolved  in  the  direction  of  q  ;  if 

p  is  the  direction  of  the  resultant,  and 
P  is  the  resultant ; 

the  value  of  either  of  these  forces  is  represented  by  the  formula 

Pq  =  Dqa  =  2'FDJ  =  2'Fcoaf. 

But,  by  putting 

j?=jsmpmny=2mpi, 

the  condition  that  p  is  perpendicular  to  the  level  surface,  for  which 

the  potential  is  constant,  gives 

COS^  =z—f—  = x          L 

Px 

L' 

the value of  the resultant  is 

P =  Dp£2=2x& &!>, 

,  Ju 

=  2XDX£2  cos?-. 

=  ZX 

-*  X 

1 

_  Zx  PI        & 
L            L 

=  L  =  sl(2xP\ 

;)• 

82.  By  an  elementary  motion  of  translation,  each  point  of  a 

system  is  carried  to  the  same  distance  in  the  same  direction ;  the 

potential  of  the  system  is  changed,  therefore,  precisely  as  if  all  its 

points  were  united  in  one,  and  all  the  forces  applied  at  this  point. 

The  tendency  of  a  system  to  any  motion  of  translation,  is,  then,  the  same  as 
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that   ivliich  would  arise  from  the   action   of  a  single  force,  equal  to  the 

resultant  of  all  the  forces,  supposed  to  be  applied  at  the  same  point. 

83.  The  moment  of  a  force,  ivith  reference  to  a  point,  is  the  product 

of  the  force  multiplied  by  its  distance  from  the  point.  The  moment 

of  a  force,  ivith  reference  to  a  line,  is  the  product  of  the  projection  of 

the  force  upon  a  plane  perpendicular  to  the  line  multiplied  by  the 
distance  of  the  force  from  the  line. 

The  moment  of  a  force,  with  reference  to  a  line,  may  be 

represented  geometrically  by  a  corresponding  length  taken  upon 

the  line,  and  the  name  of  the  moment  may  be  given  to  its  geomet- 

rical representative. 

The  moment  of  a  force,  •with  reference  to  a  point,  is  the  same 
with  the  moment,  with  reference  to  the  line,  which  is  drawn 

through  the  point  perpendicular  to  the  common  plane  of  the  point 
and  the  force. 

84.  The  moment  of  a  force,  ivith  reference  to  a  line  passing  through  a 

point,  is  equal  to  the  projection  upon  the  line  of  the  moment,  with  reference  to 

the  point.  For  the  moment,  with  reference  to  the  point,  is  equal  to 

double  the  area  of  the  triangle,  of  which  the  base  is  the  force,  and 

the  altitude  is  the  distance  of  the  force  from  the  point ;  and  the 

moment,  with  reference  to  the  line,  is  equal  to  double  the  area  of 

the  triangle,  of  which  the  base  is  the  projection  of  the  force  upon 

the  plane  perpendicular  to  the  line,  and  the  altitude  is  the  distance 

of  this  projection  from  the  line.  But  the  latter  of  these  triangles  is 

the  projection  of  the  former  upon  the  plane,  and  its  area  is  equal  to 

the  product  of  the  area  of  the  former  triangle,  multiplied  by  the 

cosine  of  the  angle  of  the  planes  of  the  two  triangles.  But  the 

lines  upon  which  the  moments  are  represented,  being  respectively 

perpendicular  to  these  planes,  have  the  same  mutual  inclination. 

The  moment,  with  reference  to  the  line,  is,  therefore,  equal  to  the 

product  of  the  moment,  with  reference  to  the  point,  multiplied  by 
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the  cosine  of  the  mutual  angle  of  the  moments ;  that  is,  it  is  equal 

to  the  projection  upon  the  line  of  the  moment,  with  reference  to 

the  point. 

85.  Hence  it  follows  that  the  moments  of  forces,  with  refer- 

ence to  points,  may  be  combined  by  the  same  processes  in  which 

the  forces  themselves  are  combined,  and  that  all  the  moments,  with 

reference  to  a  point,  may  he  combined  into  one  resultant  moment. 

86.  The  tendency  of  the  force  F,  of  which  the  potential  is 

Ff,  to  produce  an  elementary  rotation,  d&,  about  a  line  p,  is 

But  if 

(142G)  gives 

D0(Ff)  =  FDdf. 

o  is  the  distance  of  F  from  p, 

B0f=QsmP; 

the  projection  of  F  upon  the  plane  perpendicular  to^;,  being 

Fsm? 
the  tendency  to  rotation  about  p  becomes 

oJ^sin^  =  the  moment  of  F  with  reference  to  p  ; 

that  is,  the  moment  of  a  force,  with  reference  to  a  line,  is  the  measure  of  its 

tendency  to  produce  rotation  about  that  line. 

87.  The  direction  of  the  positive  moment  must  be  assumed  to 

be  the  same  with  that  of  the  axis,  about  which  the  tendency  to 

rotation  of  the  force  is  positive. 

88.  The  residtant  moment  of  all  the  forces  of  a  system,  tvith  reference 

to  a  point,  is  the  measure  of  their  tendency  to  produce  rotation  about  that 

point.  Hence,  the  one  force,  of  which  the  moment  is  equal  to  the 

resultant  moment,  has  the  same  tendency  to  produce  rotation. 
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89.  The  resultant  moment  of  all  the  forces  which  act  upon  a 

point,  with  reference  to  any  line  or  to  any  other  point,  is  the  same 

with  the  moment  of  their  resultant.  For  the  point  upon  which  the 

forces  act  tends  to  move  in  the  direction  of  their  resultant,  with  a 

force  equal  to  its  intensity,  and  its  moment  is,  therefore,  the 

measure  of  the  tendency  to  motion. 

90.  The  moment  of  a  force,  with  reference  to  a  line  pr,  is 
equal  to  its  moment,  with  reference  to  a  parallel  line  p,  increased 

by  the  moment  of  an  equal  and  parallel  force,  acting  at  any  point 

of  the  line  p.  For  the  distance  of  the  original  force  from  the  line 

pr,  is  equal  to  its  distance  from  the  line  p,  increased  by  the  distance 
froniji/  of  the  parallel  force  passing  through  p. 

91.  Hence  the  resultant  moment  of  any  forces,  with  reference  to  a  line 

p',  is  equal  to  their  resultant  moment,  ivith  reference  to  a  parallel  line  p, 

increased  by  the  moment,  with  reference  to  p ' ,  of  equal  and  parallel  forces 
acting  at  any  point  of  the  line  p. 

92.  The  resultant  moment  of  any  forces,  with  reference  to  a  point  0 ' , 
is  equal  to  their  resultant,  with  reference  to  a  point  0,  increased  by  the 

moment,  with  reference  to  0 ' ,  of  equal  and  parallel  forces  acting  at  0.  For 
this  proposition  is  true  for  each  pair  of  the  parallel  axes  of  two 

parallel  systems  of  three  rectangular  axes,  of  which  the  points  0 

and  0'  are  the  respective  origins. 
93.  A  couple  of  forces  is  a  system  of  two  parallel  and  equal 

forces  which  act  in  different  lines. 

94.  The  moment  of  a  couple  of  forces  has,  for  every  point  of  space, 

the  same  value,  which  is  equal  to  the  moment  of  one  of  them  for  any  point  of 

the  other.  For  two  forces,  equal  and  parallel  to  them,  applied  at  any 

point,  destroy  each  other's  action,  and  their  resultant  vanishes. 
95.  The  tendency  of  a  couple  of  forces  to  produce  rotation 

about  a  point,  is  the  same  as  that  of  any  system  of  forces,  when  its 

moment   is   equal   to   the    resultant   moment   of  the  system,  with 
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reference  to  the  point.  But  the  couple  has  no  tendency  to 

produce  a  translation ;  whereas  the  resultant  of  a  system  of  equal 

and  parallel  forces,  acting  at  the  point,  has  all  the  tendency  of  the 

system  to  produce  translation,  but  none  to  produce  rotation  about 

the  point.  Hence,  the  three  forces,  of  which  one  is  the  resultant  of  the 

equal  and  parallel  forces  acting  at  a  point,  and  the  other  tivo  constitute  a 

couple,  of  which  the  moment  is  the  same  with  the  resultant  moment,  with 

reference  to  the  point,  fully  represent  any  system  of  forces  in  their  tendency 

to  produce  rotation  and  translation. 

96.  Since  the  position  of  the  couple  of  forces  is  quite  arbi- 

trary, one  of  the  pair  may  be  taken  to  act  at  the  same  point  with 

the  resultant  of  all  the  forces;  and,  by  combining  it  with  the 

resultant,  the  system  of  three  forces  may  be  reduced  to  two. 

97.  A  point  can  always  be  found  in  space,  for  which  the 

moment  of  a  given  force  has  any  assumed  magnitude,  and  any 

direction  which  is  perpendicular  to  the  force.  Because  the  distance 

of  the  point  from  the  force,  which  is  one  of  the  factors  of  the 

moment,  may  vary  from  zero  to  infinity,  and  its  direction  from  the 

force  may  be  that  of  any  perpendicular  to  the  force. 

Hence,  if  the  resultant  moment,  with  reference  to  a  point  0, 

of  any  system  of  forces,  is  decomposed  into  two  moments,  of  which 

one  has  the  same  direction  with  the  force,  and  the  other  is  per- 

pendicular to  it,  another  point  0'  can  be  found,  for  which  the 
moment  of  the  resultant,  acting  at  0,  is,  in  amount  and  direction, 

the  negative  of  that  component  of  the  resultant  moment  for  0, 

which  is  perpendicular  to  the  resultant.  For  the  point  0',  there- 
fore, the  resultant  moment,  coincides  in  direction  with  the  result- 

ant itself;  and  of  the  three  corresponding  forces  which  represent 

the  tendency  of  the  system  to  produce  rotation  and  translation,  the 

plane  of  the  couple  is  perpendicular  to  the  direction  of  the  result- 
ant. 

6 



—  42  — 

98.  If  all  the  forces  lie  in  the  same  plane,  for  any  point  of  the 

plane  the  moment  of  each  of  the  forces  is  perpendicular  to  the 

plane,  and,  therefore,  the  resultant  moment  is  perpendicular  to  the 

plane.  But  the  resultant  of  the  parallel  and  equal  forces  acting  at 

the  point  must,  if  it  does  not  vanish,  lie  in  the  same  plane,  and  be 

perpendicular  to  the  resultant  moment.  If,  then,  the  resultant  does 

not  vanish,  a  point  of  the  plane  can  be  found  for  which  the  result- 
ant moment  vanishes. 

99.  If  all  the  forces  are  parallel,  the  moment  of  each  of  them, 

for  any  point,  lies  in  the  plane  which  is  drawn  through  the  point 

perpendicular  to  the  forces.  But  the  resultant  of  the  parallel  and 

equal  forces,  acting  at  the  point,  has  the  same  common  direction 

with  them,  and  is,  therefore,  perpendicular  to  the  resultant  moment. 

If,  then,  the  resultant  does  not  vanish,  a  point  can  be  found  for 
which  the  resultant  moment  vanishes. 

Hence,  if  all  the  forces  of  a  system  lie  in  the  same  plane,  or  if  they  are 

all  parallel  to  each  other,  their  tendency  to  produce  translation  or  rotation  is 

equivalent,  either  to  that  of  a  single  force,  or  to  that  of  a  couple  of  forces. 

100.  If  of  any  system  offerees,  and  for  a  point  0 

Mis  the  resultant  moment, 

R  the  resultant  of  equal  and  parallel  forces  acting  at  0, 

Mp  and  Rp  the  projections  of  M  and  R  upon  the  direction 

ofp, 

and  if  the  same  letters  accented  denote  the  same  quantities  for  the 

point  0',  and  if    - 

x,  y,  and  z  are  the  rectangular  coordinates  of  0'  with  reference to  0, 

the  value  of  the   moment   of  the   forces   for   either   of  the   axes 

passing  through  0'  is, 

M,x^=Mx  —  zRy-\-yRz. 
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But  if  the  direction  of  the  axis  of  z  is  assumed  to  be  the  same  with 

that  of  B,  these  moments  become 

M'x  =  Mx+yR, 

My  =  My  —  wR, 

The  coordinates  of  the  points,  for  which  the  resultant  moment  has 

the  same  direction  with  the  resultant,  are 

MX  __    My 

101.  The  number  of  forces  which  is  required  to  produce  any 

of  the  special  effects  of  a  given  system  of  forces,  is  usually  much 

less  than  the  whole  number  of  those  which  actually  concur  in 

their  production.  The  mode  of  analysis,  by  which  the  requisite 

forces  may  be  ascertained,  is,  in  most  cases,  quite  as  simple  as  that 

by  which  the  effects  of  rotation  and  translation  have  been  investi- 

gated. 

III. 

GRAVITATION,   AND    THE    FORCE    OF    STATICAL   ELECTRICITY. 

102.  Gravitation  is,  among  all  the  forces  of  nature,  conspicuous 

for  its  universality,  and  the  grandeur  of  the  scale  upon  which  it  is 
exhibited. 

Each  f  article  of  matter  is  an  elementary  centre  of  action  for  the  force 

of  gravitation,  and  all  the  level  surfaces  for  each  particle  are  spherical 

surfaces,  of  ivhich  the  particle  is  the  centre.  The  value  of  the  potential  for 

any  particle,  is  inversely  proportional  to  the  distance  from  the  particle,  and 

for  different  particles  it  is  proportional  to  the  mass  of  the  particle. 

103.  Another  force  which  seems  to  be  equally  universal  with 

gravitation,    and   of  which   gravitation   has   been,   perhaps  justly, 
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regarded  as  a  residual  force,  and  which  is  subject  to  the  same  law, 

in  respect  to  distance  from  each  elementary  centre  of  action,  is  that 

of  statical  electricity.  This  force,  however,  is  endowed  with  duality, 

and  consists  of  tivo  forces,  of  which  one  has  a  positive,  and  the  other  a 

negative  potential.  Both  forces  are  usually  combined  with  equal 

intensity,  in  the  same  centre  of  action,  so  as  to  neutralize  each 

other's  influence,  and  thus  lie  dormant.  With  each  of  these  the  poten- 
tial is  positive  in  reference  to  electricity  of  the  other  land,  and  negative  ivith 

reference  to  that  of  the  same  kind.  The  tendency  to  motion,  arising 

from  one  kind  of  electricity,  is  exactly  equal  and  opposite,  then,  to 

that  which  arises  from  the  action  of  an  equal  intensity  of  the  other 

kind,  distributed  in  the  same  way. 

104.  The  action  of  electricity  upon  the  mass  of  a  particle 

is  indirect ;  the  direct  action  is  upon  the  electricity  associated 

with  the  mass.  In  most  bodies  the  electricity  yields  with  more  or 

less  facility  to  this  action,  leaves  the  particle  with  which  it  is 

originally  combined  for  another  particle,  and  finally  assumes  such  a 

form  of  distribution  within  and  upon  the  body,  that  the  tendency  to  motion 

shall  nowhere  exceed  the  resistance  to  motion.  Bodies  in  which  there  is 

no  resistance  to  the  motion  of  electricity  are  called  perfect  conductors; 

while  those  in  which  the  resistance  is  infinite  are  called,  perfect  non- 
conductors. 

105.  Let 

dm  denote  the  mass  of  a  particle  of  matter  in  the  case  of 

gravitation,  or  the  value  of  its  potential  at  the  unit  of 

distance,  in  the  case  either  of  gravitation  or  elec- tricity ; 

da,  the  element  of  volume  of  the  mass  ; 

/-,  the  density  of  the  matter,  in  the  case  of  gravitation,  or 
the  intensity  of  the  force  of  electricity,  compared 

with  the  unit  of  intensity  ; 
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/,  the  distance  from  the  particle  ; 

dS2,  the  value  of  the  potential  for  the  particle  ; 

the  expression  of  the  potential  for  the  particle  is 

,  r->         dm         kda 

m  =  T  =  T- 
The  general  value  of  the  potential  for  the  whole  body  is 

°=fJ=SJ 
106.     With  reference  to  a  system  of  three  rectangular  axes, 

let 

x,  y,  z,  be  the  coordinates  of  the  point  in  space,  for  which  the 

potential  is  £2,  and 

£;,  i],  l,  those  of  the  particle. 

Adopt  also  the  functional  notation 

The  derivatives  of/ and/-1  are 

Dxf=COBf  =  — — . 

~"  P  ~~T' 
D-  =  —  -Df  — 

Hence 

xf  ~      P    xJ  ~~       P  ' 

Dl±  =  -±Dlf+?rz{Dxfy  =  ~sin2y  2cos"; _  —  1  +  8008^ 

—  J3  -■ 

1   —  3  +  3^cos2^   ft 

VJ~  "      ~P~       ~~      ' 
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and,  therefore, 
pd£2  =  Q, 

This  last  equation,  which  is  called  Laplace's  equation,  only 
applies  to  that  extent  of  space  for  which  the  derivatives  of  the 

potential  are  continuous  functions,  that  is,  where  there  are  no 

centres  of  action  ;  but,  where  there  are  centres  of  action,  it  requires 

a  modification  which  will  soon  be  investigated.  The  integration  of 

this  equation,  combined  with  peculiar  considerations  in  special 

cases,  gives  the  value  of  the  potential  for  all  the  problems  of 

gravitation  or  statical  electricity. 

107.  The  tendency  to  motion,  resulting  from  the  gravitating  or 

electrical  action  of  a  particle  of  matter,  being  normal  to  the  level  surface,  is 

directed  in  the  straight  line  drawn  to  the  particle.  Its  intensity  is  the 

derivative  of  the  potential,  and  expressed  by  the  equation. 

The  force  of  the  gravitating  or  electrical  action  of  a  particle  of  matter, 

is,  therefore,  inversely  proportional  to  the  square  of  the  distance  from  the 

particle.  It  is  attraction  in  the  case  of  gravitation,  or  behveen  electricities 

of  opposite  kinds,  and  repulsion  betiveen  electricities  of  the  same  land. 

ATTRACTION    OF    AN    INFINITE    LAMINA. 

108.  The  investigation  of  the  potential  of  a  lamina  of  uniform 

density,  and  included  between  two  infinitely  extended  planes,  is 

simplified  by  the  consideration,  that  it  must  have  the  same  value 

for  all  points  of  space  which  are  at  the  same  distance  from  either 

surface  of  the  lamina.  Because  all  such  points  are  similarly  situ- 
ated with  reference  to  the  lamina,  on  account  of  its  infinite  extent. 

Hence,  if  either  surface  of  the  lamina  is  adopted  for  the  plane  of  yz, 
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the  derivatives  of  the  potential,  with  reference  either  to  y  or  z, 

must  vanish,  and  Laplace's  equation  becomes 

The  integral  of  this  equation  gives  the  value  of  the  potential, 

for  a  point  external  to  the  lamina,  or  upon  its  surface, 

in  which  A  and  B  are  arbitrary  constants. 

109.  The  level  surfaces  are  the  planes  determined  by  the 

equation  (477),  when  £2  is  the  constant  value  of  the  potential  for 
the  level  surface. 

110.  The  action  of  the  lamina  upon  any  external  point,  is  in 

a  direction  perpendicular  to  either  surface,  and  its  force  of  attraction 

or  repulsion  is  constant  upon  all  points,  for  it  is  given  by  the  equation 

111.  The  values  of  A  and  B  in  any  special  case  must  be 

ascertained  by  direct  integration.  The  integration  indicated  in 

(458),  gives  an  infinite  value  of  the  potential,  whereas  the  integra- 
tion of  its  derivative,  with  reference  to  x,  gives  A  itself,  in  a  finite 

form,  which  shows  that  the  infinite  portion  of  the  potential  belongs 

to  B.  The  integration  for  finding  the  derivative  of  the  potential  is 

effected  by  putting 

Q=fsm*, 
=  the  projection  of/  upon  the  plane  of  yz. 

a  ■=■  the  thickness  of  the  lamina ; 
whence 

f={x  —  £)sec*, 

o  =  (x  —  £)tan^, 
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da  =  Qdody  d'E,, 

=  (x  —  I)'- smxf  sen"  dUHl 

=-£fzPsia?- 0        0        0 

= —  2jzaJc  =  A. 

This  value  of  A  corresponds  to  a  positive  value  of  x,  but  for  a  nega- 

tive value  of  x  its  sign  must  be  reversed. 

112.  For  a  point  situated  within  the  lamina,  a  plane  may  be 

drawn  through  it  parallel  to  the  superficial  planes,  and  dividing  the 

lamina  into  two  partial  laminse,  of  which  the  thicknesses  are  x  and 

a  —  x.     Hence,  the  value  of  the  derivative  of  the  potential  is 

DXS2  =  —  2nJcx  -\-  2nk{a —  x) 

=  2nk(a —  2x). 

poisson's  modification  of  laplace's  equation  for  an  intepvIor  point. 

113.  The  modification  which  is  required  of  Laplace's  equa- 
tion, in  order  that  it  may  be  applicable  to  any  point  of  an  acting 

mass,  must  be  the  same  for  all  cases.  For  it  would  not  be  needed, 

if  the  point  of  action  were  contained  within  any  extent,  however 

small,  of  void  space.  It  depends,  therefore,  exclusively  upon  the 

infinitesimal  portion  of  matter  at  the  point,  and  is  unaffected  by 

any  variations  in  the  form  and  extent  of  the  acting  body.  It  need 

be  investigated,  then,  in  only  a  single  case.  Now  the  derivative 

of  (4816)  gives 

D2X£2  =  —  4:7i7e, 

which  substituted  in  Laplace's  equation  gives  for  an  internal  point 
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of  the  infinite  lamina, 

p£2  =  —  inJc 
05 

"which  is,  therefore,  the  required  modification  of  this  equation. 
This  modified  equation,  in  which  Ic0,  denotes  the  value  of  7c  at  the 

point  of  action,  is  applicable,  as  remarked  by  Sturm,  even  when  the 

point  is  exterior  to  the  body.  This  same  geometer  has  observed 

that,  by  supposing  the  value  of  Jc  gradually  to  shade  off  from  its 
value  within  the  hodiy  to  zero,  this  graduation  occurring  within  an 

infinitely  small  extent,  so  as  not  sensibly  to  interfere  with  the 

actual  phenomena  of  nature,  the  potential  and  its  differential  coeffi- 
cients may  become  continuous  functions.  It  must  be  further 

observed,  however,  that  this  imaginary  graduation  must  extend 

throughout  all  space,  although  k  must  have  an  infinitesimal  value 

where  there  is  no  portion  of  active  force ;  for  if  it  were  to  vanish 

throughout  any  finite  portion  of  space,  however  small,  the  reason- 
ing of  §  69,  would  prove  that  all  the  derivatives  of  the  potential 

were  not  finite  and  continuous. 

ATTRACTION    OF    AN   INFINITE    CYLINDER. 

114.  The  investigation  of  the  potential  of  an  infinite  cylinder 

is  simplified  by  the  consideration  that  its  value  must  be  the  same 

for  all  points  situated  upon  the  same  straight  line  parallel  to  one  of 

the  sides  of  the  cylinder.  If  this  direction  is  adopted  for  the  axis 

of  s,  the  derivative  of  the  potential,  with  reference  to  z,  must 

vanish,  and  Laplace's  equation  becomes 

r£2  =  {Di+D%)n  =  o. 

The  integral  of  this  equation  is 

S2  =  $(*  +  ysTi)  +  ®i(x  —  yvQ, 
7 
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in  which  *$  and  9^  are  arbitrary  functions,  and  must  be  determined 
for  each  case  by  special  considerations. 

115.  The  level  surfaces  are  the  cylindrical  surfaces,  of  which 

(4930)  is  the  general  equation,  if  £2  has  the  constant  value  belonging 
to  that  surface. 

116.  The  attraction  in  the  direction  of  the  axis  of  x  is 

in  which  the  accents  denote  the  derivatives  of  the  functions,  with 

reference  to  their  explicit  variables. 

The  attraction  in  the  direction  of  the  axis  of^  is 

Dy£i  =  [#'(*  +yvQ  -  ̂ '0  -ytfTx)]*Ci. 

The  whole  action  is,  then, 

s/[(Bxy^(nyy]n  =  2^[W(x+y^).^(x-y^[)^ 

117.  When  the  point  of  action  is  so  far  from  the  cylinder  that  the 

square  of  the  linear  dimensions  of  the  base  can  be  neglected,  in  comparison 

ivith  the  square  of  the  least  distance  of  the  point  from  the  cylinder,  the 

problem  can  be  greatly  simplified. 
Find  in  this  case  a  line  parallel  to  the  axis  of  z,  of  which  the 

coordinates  a  and  b,  with  reference  to  the  axes  of  x  and  y,  are 

determined  by  the  equations 

f  (£  —  a)  =  0  =  f  I  — am, 

J  Or} — b)  =  0=l   1]  —  bm. m  \J  in 

This  line  may  be  called  the  axis  of  gravity  of  the  cylinder,  and 

its  position  is  wholly  independent  of  the  directions  of  the  axes  of 

x  and  y.     For  the  conditions  by  which  this  axis  is  determined  will 
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give,  with  regard  to  any  other  axis  of  x,  with  reference  to  which 

the  notation  is  distinguished  by  the  subjacent  numbers, 

If  the  axis  of  gravity  is,  then,  assumed  for  the  axis  of  z,  the 

equations  (5025_2o)  become 

or 

118.  Since,  from  the  nature  of  the  cylinder,  the  functions 

which  are  here  to  be  integrated  are  independent  of  C,  these 

equations  give 

119.  Let  the  perpendicular  from  the  point  of  action  upon  the 

axis  of  z  be  assumed  for  the  axis  of  x,  and  let 

/0  be  the  distance  of  the  point  of  action  from  the  projection  of 

any  particle  of  the  cylinder  upon  the  axis  of  z, 

o  the  distance  of  the  particle  from  the  axis  of  z. 

The  conditions  of  the  problem  under  consideration  give 

- :==  —  (l   4-  —  ̂    =  —    -t-  ̂ 1  ' 
J         / o  \  Jo/         Jo         Jo 

J  mj  J  mJo         JmJ0 

Jmfo  J  tfoJ  %J  ri  Jmfo' 
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so  that  the  potential  is  the  same  as  if  all  the  particles  of  the  cylinder  ivere 

united  in  their  projections  upon  the  axis  of  gravity,  when  the  point  is  at  a 

sufficiently  great  distance  from  the  cylinder. 
120.     By  letting 

K  denote  the  intensity  of  the  action  concentrated  upon 

each  point  of  the  axis  of  gravity  when  the  cylinder 

is  projected  upon  it; 

the  value  of  the  whole  action  of  this  axis  is 

oo  oo 

•A*^  =  —  /  LJr=  — Kx  I  ,  .„  ,  >.„.  g 
  CO  —CO 

in 

KP         x              2K 
=   I*  cos*  =   , 

*J/o        /o  x 

or  the  potential  is 

£2=  —  2Klogx-\-B, 

in  which  the  arbitrary  constant  B  is  infinite. 

121.  When  the  base  of  the  cylinder  is  the  space  which  is  contained 

hctiveen  two  concentric  circles,  the  axis  of  gravity  coincides  with  the 

geometrical  axis,  the  potential  is,  from  the  symmetry  of  the  figure, 

the  same  in  all  directions  from  the  axis,  and  its  value  only  depends 

upon  the  distance  from  the  axis.  Let  the  axes  be  the  same  as  in 

§§117  and  119,  except  that  the  point  of  action  is  in  the  plane  of 

x  y,  but  not  in  the  axis  of  x,  and  let 

r  =  the  radius  vector  of  the  point  of  action,  and 

c  =  the  base  of  the  Naperian  system  of  logarithms. 

The  potential  is  a  function  of  r,  and  does  not  involve  the  inclination 
of  r  to  the  axis  of  x.     Hence 

Z>*S2  =  0. 
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But  by  (4930) 

n  =  ®\rc'S    7  +  ̂ C'c  "      /'> whence 

and 

D*&  =  lW\rc       he       —W\re         he         JvCi=0; 

W\rc       Jrc       =  <$[\rc         /re 

But  the  two  members  of  this  equation  are  functions  of  two  different 

and  independent  variables,  which  are 

r  V  —  1  —  r  V  —  1  . 

re         and  re  > 

and,  therefore,  neither  can  be  contained  in  the  value  of  the  other, 

so  that  each  of  them  disappears  from  their  common  value,  which  is, 

therefore,  constant.  With  regard  to  any  variable  whatever,  there- 
fore, this  equation  gives 

rWr  =  rW1r  =  A, 

and,  by  integration, 
&r  =  &ir=*} 

<$r  =  A\ogr-\-B, 

<&1r  =  Alogr-^-B^ 

The  value  of  the  potential  is,  then,  if  the  two  constants  are  com- 
bined in  one, 

(—  \l    \  /    —X\I   \ 
,  rcr   ~J-\-A\og\rc  '      Z+^2 =  2Alogr  +  B2, 

and  the   action  upon  the  point  is  in  the  direction  of  r,  and   its 
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value  is 

r 

122.  When  the  point  of  action  is  upon  the  axis,  it  is  plain, 

from  the  symmetrical  nature  of  the  cylinder,  that  the  action  is 

cancelled  in  each  direction,  and  in  this  case 

whence 
4  =  0. 

For  every  point  within  the  inner  cylindrical  boundary  of  this  cylindrical 

shell,  the  action,  therefore,  vanishes,  and  the  potential  is  constant. 

123.  When  the  point  of  action  is  without  the  cylinder,  the 

constants  are  found  by  the  condition  that  when  the  distance  is  very 

great,  the  value  must  be  the  same  as  that  of  (5213).     Hence 

A  =  —  K, 

that  is,  the  action  upon  every  point,  ivithont  the  circular  cylinder,  is  the 

same  as  if  the  ivhole  mass  of  the  cylinder  were  concentrated  upon  its  axis. 

124.  No  other  case  of  the  infinite  cylinder  is  of  sufficient 
interest  to  divert  the  current  of  the  work  from  the  finite  masses 

of  nature. 

RELATION   OF   THE   POTENTIAL    TO    ITS    PARAMETER. 

125.  The  varying  value  of  the  potential  from  one  level 

surface  to  another,  depends  upon  the  law  of  the  change  of  surface, 

and  may  be  represented  as  a  function  of  a  variable,  which  may  be 

called  its  parameter.     Let 

X  denote  the  parameter  of  the  potential,  and  adopt  the  func- 
tional notation 

□  =  Sx  {Dxf  =  {Dxf  +  (Dyy  +  (A)2- 
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The  derivative  of  the  potential  gives 

DJ2=D7lP-Dxl, 

which  is  a  transformation  given  by  Lame. 

126.  For  a  point  of  void  space,  this  equation  gives 

^  =  DMogDM)  =  —  ̂  ; 

by  which  the  potential  may  be  determined  for  given  forms  of  I. 

ATTRACTION    OP   A   FINITE   POINT   UPON   A   DISTANT   MASS.      CENTRE    OF    GRAVITY. 

127.  In  every  finite  mass  there  is  a  point  called  the  centre 

of  gravity,  of  which  the  coordinates  are  determined  by  equations,  for 

each  axis,  which  are  similar  to  (5025_26)-  This  point  is  independent 

of  the  positions  of  the  axes,  for  these  equations  give  for  any  other 
axis 

If  the  centre  of  gravity  is  adopted  for  the  origin  of  coordinates, 

these  equations  are  reduced  to  (518_10). 

128.  When  the  point  of  action  is  so  far  from  the  attracting 

mass,  that  the  squares  of  the  linear  dimensions  of  the  mass  may  be 

neglected  in  comparison  with  the  square  of  the  distance  of  the 

point  from  the  mass,  the  formula  becomes 

f  =  2.(*  —  ty  =  2x{z*  —  2*£+|") 
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-  f  -  4-  2  (-  f  t) 
m 

that  is,  the  potential  of  a  finite  point,  for  a  mass  which  is  so  remote  that 

the  square  of  the  linear  dimensions  of  the  body  may  he  neglected,  in  compari- 

son with  the  square  of  the  distance  of  the  point  from  the  body,  is  the  same  as 

if  the  body  were  concentrated  at  its  centre  of  gravity. 

ATTRACTION  OP  A  SPHERICAL  SHELL. 

129.  In  the  case  of  a  shell  of  homogeneous  matter,  contained 

between  the  surfaces  of  two  concentric  spheres,  the  value  of  the 

potential  must,  from  the  symmetry  of  the  figure,  depend  exclu- 
sively upon  the  distance  from  the  centre ;  and  for  the  same  reason 

this  centre  is  the  centre  of  gravity.  If  the  centre  is  adopted  for  the 

origin  of  coordinates,  the  parameter  may  be  assumed  to  be  the 

radius  vector,  or  any  function  of  it.     Putting,  then, 

derivation  gives 

Dxl  =  2x, 

PX  =  Q. 

Hence,  (558)  becomes 

The  integral  of  this  equation  is,  by  the  introduction  of  the  arbitrary 
constants  A  and  B, 

S2  =  B-i  =  B-^. 
\  K  r 
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130.  When  the  point  of  action  is  at  the  origin,  the  value  of 

the  potential  is  easily  obtained  by  direct  integration.  Let  in  this 
case 

()0  and  ox  be  the  internal  and  external  radii  of  the  spherical 
shell, 

?n0  and  mx  the  masses  of  two  homogeneous  spheres  of  the  same 

density  with  the  shell,  and  of  which  the  radii  are  respect- 

ively ^)0  and  q1 ;  and 

dip  the  elementary  solid  angle  of  which  the  vertex  is  at  the 

point  of  action. 

The  mass  of  the  shell  is 

m  =  m-L  —  m0  =  4  n  #  (o  f  —  qI), 

and  the  element  of  mass 

dm==  7eQ2dydQ. 

The  value  of  the  potential  is,  therefore, 

=  Hf(Q\  —  9l)  =  2  7tk(Ql  —  9») 

t/Tp 

__  i  /%   ™o\ 

131.  When  the  point  of  action  is  in  the  interior  void  space  of  the 

shell,  the  constants  of  (5630)  must  have  the  same  values  as  at  the 

origin,  where  r  vanishes.     Hence,  for  this  space,  the  constants  are 
,1  =  0, 

J  =  2**(9J-?5)  =  i(=i-=2J. 

The  value  of  the  potential  in  the  interior  void  space  is,  therefore, 
constant,  and  there  is  no  tendency  to  motion  in  any  direction. 



B  = 

=  0, 

A  = 

=  —  m ; 

£2 m 
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132.  For  an  exterior  point,  the  potential  vanishes  when  r  is 

infinite,  while  for  a  point  at  a  great  distance  from  the  origin,  its 

value  is,  by  §  128,  the  same  as  if  the  whole  mass  were  concentrated 

at  the  origin.     The  value  of  the  constants  in  this  case  are  then 

and  the  potential  is 

Any  exterior  point  is,  then,  attracted  by  a  homogeneous  spherical  shell, 

precisely  as  if  the  ivhole  mass  of  the  shell  tvere  concentrated  upon  its  centre 

of  gravity. 

ACTION     AND     REACTION     OF     A     SURFACE     OR     INFINITELY     THIN     SHELL 

OF     FINITE     EXTENT.       CHASLESIAN    SHELL. 

133.  An  infinitely  thin  shell  may  be  reduced  to  either  of  its 

surfaces,  upon  which  all  its  acting  force  may  be  concentrated,  and 

the  intensity  of  the  action  at  each  point  of  the  surface  will  be  the 

product  of  the  corresponding  intensity  of  the  force  of  the  shell, 

multiplied  by  the  thickness  of  the  shell,  and  the  element  of  the 
surface  must  be  substituted  for  the  element  of  volume  of  the  shell. 

Let  then, 

do  be  the  element  of  the  surface, 

N  the  exterior  direction  of  the  normal  to  the  surface, 

Jc  the  concentrated  intensity  of  action  at   any  point   of  the 
surface, 

dip  the  elementary  solid  angle  subtended  by  the  element  of  the 

surface  at  the  point  of  action  ; 

the  expression  of  the  element  of  the  surface  is 

do  =f2dy  sec  j£. 
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Hence 

7      7  C0S    f  1      7 —  /cctip  =   j^-lcdc) . 

The  second  member  of  this  equation  denotes  the  action 

exerted  by  each  element  of  the  surface  in  a  direction  normal 

to  the  surface,  and  towards  the  interior  of  the  surface.  If,  there- 

fore, the  intensity  of  action  is  constant  over  the  surface,  the  action 

normal  to  the  surface  is  proportional  for  each  element  of  the 

surface,  to  the  solid  angle  subtended  by  the  element,  and  the  total 

amount  of  the  action,  normal  to  the  surface,  exerted  by  any  continuous  extent 

of  the  surface,  is  proportional  to  the  whole  solid  angle  subtended  by  the 

boundary  of  the  surface. 

134.  If  the  surface  is  a  plane,  the  direction  of  the  normal  is 

invariable,  and  the  total  amount  of  normal  action  exerted  by  any 

portion  of  the  plane  is  the  same  with  the  projection  of  the  ivhole  action 
of  this  portion  of  the  plane  upon  the  perpendicular  to  the  plane,  which  is 

therefore  proportional  to  the  solid  angle  subtended  by  the  portion  of  the 

plane  at  the  point  of  action. 

135.  If  the  surface  returns  into  itself  so  as  to  include  a  space,  ivhich 

is  called  a  closed  surface,  and  if  the  point  of  action  is  situated  within  the 

inclosed  space,  the  ivhole  angle  subtended  is  the  entire  extent  of  four  right 

angles  ;  whereas,  if  the  point  of  action  is  exterior  to  the  closed  surface,  the 

whole  angle  vanishes ;  but  it  is  tivo  right  angles  when  the  point  is  upon  the 

surface.  For,  however  the  point  of  action  is  situated,  if  a  line  is 

drawn  from  it  so  as  to  cut  the  surface  more  than  once,  the 

successive  angles  which  the  line  makes  with  the  exterior  normal, 

will  be  alternately  obtuse  and  acute  as  the  line  cuts  into  the 

surface  or  out  from  it.  The  last  angle,  or  that  of  which  the  vertex 

is  most  remote  from  the  point  of  action  will  always  be  acute.  The 

normal  actions  of  two  successive  elements,  therefore,  upon  the  same 

line,  and  which  subtend  the  same  solid  angle,  are  equal,  but   of 
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opposite  signs,  so  that  they  cancel  each  other's  effect  in  the  total 
sum  of  the  normal  forces.  But  if  the  point  of  action  is  without  the 

surface,  the  first  angle  is  obtuse  upon  each  line,  and  as  the  last 

angle  is  acute,  the  whole  number  of  intersections  is  even,  and  each 

normal  elementary  action  is  cancelled  by  another,  and  the  whole 

sum  vanishes.  If  the  point  of  action  is  within  the  surface,  the  first 

angle  is  acute,  if  there  is  more  than  one ;  and  there  are  an  odd 

number  of  intersections  for  every  direction  in  which  a  line  can 

be  drawn ;  for  each  direction,  therefore,  one,  and  only  one,  normal 

action  remains  uncancelled,  which  is  proportional  to  the  elemen- 

tary solid  angle  ;  and  the  whole  sum  is  that  of  the  entire  extent 

of  four  right  angles.  But,  if  the  point  of  action  is  upon  the 

surface,  and  a  tangent  plane  to  the  surface  is  drawn  through  it ; 

every  line  which  is  drawn  from  the  point  upon  the  exterior  side  of 

the  plane  must  cut  the  surface  an  even  number  of  times,  if  it  cuts 

at  all,  precisely  as  if  it  were  drawn  from  an  exterior  point;  but 

every  line  which  is  drawn  upon  the  interior  side  of  the  plane  cuts 

the  surface,  as  if  it  were  drawn  from  an  interior  point ;  the  total 

sum,  then,  of  the  uncancelled  elementary  solid  angles  includes  those 

for  all  directions  which  are  upon  the  inner  side  of  the  plane,  that  is, 

it  is  equal  to  two  right  angles.  This  elegant  theorem,  given  by 

Gauss,  is  expressed  analytically  in  the  form 

I 
4  n  for  a  point  interior  to  a  closed  surface, 

„-=  <  2?r  for  a  point  upon  the  surface, 

0  for  an  exterior  point. 

136.  The  expression  (592)  represents  the  component  in  the 

direction  of  the  external  normal  to  a  surface,  of  the  action  upon  the 

element  of  the  surface  of  a  mass  Jc  concentrated  at  the  point  which, 

in  that  expression,  was  the  point  of  action.  The  integral  of  this 

expression  is  the  whole  amount  of  such  resolved   action,  and  by 
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(6024)  its  value  is 

C —  4:7tk  when  the  mass  h  is  interior  to  the  surface, 

—  /    — ^h  =  —  /    Jc  =  <  —  2nk  when  the  mass  k  is  upon  the  surface, 
(^  0  when  the  mass  k  is  exterior  to  the  surface. 

Neither  of  these  values  depends  upon  the  position  of  the  acting 

mass  further  than  it  is  interior  or  exterior  to  the  surface  or  upon 

the  surface.     If,  then, 

Mi  =  all  the  mass  interior  to  the  surface, 

Mu  =  all  the  mass  upon  the  surface, 

Me  =  all  the  mass  exterior  to  the  surface ; 

the  expression  for  the  total  action  of  the  sum  of  all  the  masses  upon  a  closed 

surface,  resolved  for  each  element  in  the  direction  of  the  external  normal,  is 

4:7cM  —  2nM. 
u  ) 

and  if  all  the  masses  are  exterior  to  the  surface,  this  sum  vanishes.  If  the 

closed  surface  is  one  of  the  level  surfaces  of  the  system  of  bodies,  this  sum 

expresses  the  total  attraction  of  the  masses  upon  the  surface.  This  impor- 
tant theorem  is  due  to  Gauss,  and,  independently  to  Chasles,  in 

almost  its  full  extent,  as  well  as  most  of  the  following  deductions. 

It  is  applicable,  even  if  the  surface  have  sharp  angles,  because  the 

extent  of  surface  occupied  by  such  angles  is  zero. 
137.  If  the  closed  surface  is  one  of  the  level  surfaces  of  a 

system  of  bodies,  but  not  the  outer  boundary  of  a  space  in  which 

the  potential  is  constant,  the  potential  must  at  each  point,  by  §  67, 

increase  in  passing  from  the  interior  to  the  exterior  or  the  reverse, 

so  that  in  this  case  the  sum  (6116)  does  not  vanish.  But  the  term 

of  this  sum,  which  depends  upon  the  mass  at  the  surface,  may  be 

neglected  at  will ;  for  the  whole  mass  of  a  true  geometrical  surface 

is  absolutely  nothing.     Hence,  every  level  surface  must  inclose  masses  of 
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matter,  unless  it  be  the  outer  material  boundary  of  a  space  in  which  the 

potential  is  constant. 

138.  When  any  masses  lie  upon  the  closed  surface,  the  geo- 

metrical surface  may,  as  Gauss  observed,  be  arbitrarily  assumed  as 

being  just  exterior  or  interior  to  the  masses,  or  passing  through 

them.  If,  therefore,  all  the  masses  are  so  distributed  upon  a  surface  that  it 

becomes  itself  a  level  surface,  the  potential  is  constant  for  all  the  inclosed 

space,  and  there  is  no  tendency  to  motion  throughout  this  space. 

139.  Around  every  point  of  maximum  or  minimum  potential 

a  level  surface  of  infinitesimal  dimensions  may  obviously  be  drawn  ; 

and,  therefore,  every  point  of  maximum  or  minimum  potential  must  be  itself 

a  centre  of  action,  and  cannot  be  a  void  space. 

In  an  inclosed  space,  therefore,  no  point  can  be  found  for  which  the 

value  of  the  potential  exceeds  the  limits  of  value  which  are  found  upon  the 

inclosing  material  surface;  and  in  no  point  of  unbounded  space  has  the 

potential  so  great  a  value  as  its  greatest  value  upon  the  exterior  surface  of 

the  finite  masses.     This  inference  was  drawn  by  Gauss. 

140.  In  a  system  of  bodies,  of  which  gravitation  is  the  only  force, 

there  can  be  no  point  of  absolute  minimum  potential.  For  if  about  a  point 

of  maximum  or  minimum  potential,  as  a  centre,  an  infinitesimal 

sphere  is  described,  there  can  be  no  point  within  the  sphere,  either 

of  maximum  or  minimum  potential,  with  reference  to  the  matter 

external  to  the  sphere.  But,  with  reference  to  the  matter  of  the 

sphere  itself,  the  centre  must  be  a  point  of  maximum  potential,  and, 

therefore,  cannot  be  a  point  of  minimum  potential,  with  reference 
to  the  combined  action  of  all  the  masses. 

This  theorem  is  equally  applicable  to  an  aggregation  of  elec- 

tricity, all  of  which  is  of  the  same  kind,  that  is,  which  is  homogeneous 

when  the  point  of  action  is  assumed  to  be  of  the  opposite  kind  of 

electricity. 

141.  If  any  extent  of  level  surface  is  assumed  at  will  as  a 
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base,  and  if  trajectories,  like  those  of  §  68,  are  drawn  through  each 

point  of  its  perimeter,  their  union  forms  a  canal.  The  same  canal 

cuts  a  base,  like  the  assumed  base,  from  each  level  surface  which  it 

intersects.  Of  any  canal,  then,  ivhich  is  not  extended  so  far  as  to  include 

portions  of  the  attracting  masses,  the  attractions  upon  all  the  bases  are  equal. 

For  the  whole  amount  of  action,  resolved  in  the  direction  of  the 

external  normal,  at  each  point  of  action  upon  the  closed  surface, 

formed  by  the  faces  of  the  canal  and  the  two  terminating  bases, 

vanishes,  because  there  is  no  included  mass.  But  there  is  no  action 

perpendicular  to  the  faces,  that  is,  in  the  direction  of  the  level  sur- 

faces ;  whereas  the  whole  action  upon  the  bases  is  normal  to  them. 

The  actions  upon  one  base  are  in  the  directions  of  its  external 

normals,  while  those  upon  the  other  base  are  in  the  directions  of 

the  internal  normals ;  but  these  actions  balance  each  other  in  the 

algebraic  sum,  and,  therefore,  their  absolute  values  must  be  the 

same.  This  theorem  belongs  to  Chasles,  but  the  brief  demonstra- 
tion is  original. 

142.  In  the  following  simple  view  of  this  whole  subject,  many 

of  its  propositions  are  condensed  into  a  small  compass.  Each  centre 

of  action  may  be  regarded  as  a  fountain  from  which  a  stream  is 

perpetually  flowing  in  every  direction,  with  an  amount  of  discharge 

proportioned  to  the  intensity  of  the  action.  The  quantity  which 

flows  from  each  centre,  for  an  instant,  through  any  given  elemen- 

tary surface,  may  easily  be  shown  to  be  in  exact  proportion  to  the 

force  with  which  the  surface  is  attracted  by  this  centre  perpendicu- 

larly to  itself  and  against  the  current ;  and  that  which  is  true  for 

each  centre  is  also  applicable  to  the  combined  action  of  all  the 

centres.  Upon  a  space,  then,  in  which  there  is  no  spring,  the 

amount  which  is  flowing  out  must  constantly  be  equal  to  that  which 

is  flowing  in ;  while  from  a  space  which  contains  springs,  the  amount 

which  is  discharged  must  exceed  the  inward  flow  by  all  which  is 
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supplied  by  the  fountains.  These  propositions  are  equivalent  to 

those  of  §  136,  and  it  may  be  shown  by  an  easy  argument  that 

Laplace's  equation,  with  its  modification,  is  merely  the  same  propo- 
sition applied  to  the  element  of  space. 

By  the  additional  hypothesis,  that,  to  preserve  the  uniform 

flow  of  the  stream,  its  density  must  decrease  in  each  element  of 

the  stream  with  the  distance  from  the  origin,  so  as  always  to  be 

inversely  proportional  to  the  distance  from  the  centre,  the  potential 

represents  the  density  of  the  combined  streams,  and  the  level 

surfaces  become  surfaces  of  equal  density.  The  aggregate  current 

of  the  combined  streams  is  also  equivalent  to  a  single  current  in  a 

direction  perpendicular  to  the  level  surfaces,  and  having  a  velocity 

proportionate  to  the  rate  of  decrease  of  density.  But  this  is  the 

well  known  law  of  the  propagation  of  heat,  when  there  is  no 

radiation,  and  hence  arise  the  analogies  between  the  level  and 

isothermal  surfaces,  and  the  identity  of  the  mathematical  investi- 

gations of  the  attractions  of  bodies  and  of  the  propagation  of  heat 

which  have  been  developed  by  Chasles. 

143.  If  an  infinitely  thin  homogeneous  shell  is  formed  upon  each  level 

surface  of  a  system  of  bodies,  having  at  each  point  a  thickness  proportional 

to  the  attraction  at  that  point,  the  portion  of  either  of  these  shells,  which  is 

included  in  a  canal  formed  by  trajectories,  bears  the  same  ratio  to  the  ivhole 

shell,  ivhich  the  portion  of  another  shell  included  in  the  same  canal  bears  to 

that  shell,  provided  there  is  no  mass  included  between  the  shells.  For  if  the 

bases  of  the  canal  are  infinitely  small,  they  must  be  reciprocally 

proportional  to  the  intensities  of  the  actions  upon  them,  because  the 

whole  amount  of  action  upon  the  different  bases  is  the  same.  But 

the  thicknesses  of  the  shells  are  proportional  to  the  intensities  of 

action,  and,  therefore,  the  products  of  the  bases  multiplied  by  the 

thicknesses,  or  the  volumes  of  the  portions  of  shell  included  in  the 

same  canal,  bear  a  constant  ratio  to  each  other.     Since  the  ratios 
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are  constant  the  infinitesimal  volumes  may  be  added  together,  and 

their  sums,  which  are  the  volumes  included  in  a  finite  canal,  are  in 

the  same  ratio,  and  these  sums  may  even  be  extended  so  as  to 

include  the  whole  of  each  shell.  Hence  the  volume  of  each  portion 

is  the  same  fractional  part  of  the  volume  of  the  shell  to  which  it 

belongs ;  and,  as  each  shell  is  homogeneous,  the  mass  of  each  por- 

tion is  the  same  fractional  part  of  the  mass  of  the  whole  shell.  The 

conception  of  these  shells,  and  the  investigation  of  their  acting  and 

reacting  properties  was  original  with  Chasles,  and  it  will  be  con- 

venient, as  it  is  appropriate,  to  designate  them  as  Chaslesian  shells. 

144.  The  volume  or  mass  of  a  Chaslesian  shell  has  a  simple 

ratio  to  the  attracting  mass  included  within  it,  dependent  upon  its 

own  density  and  thickness.  For  each  infinitesimal  element  of  its 

volume  or  mass  is  proportional  to  the  product  of  the  element  of  the 

surface  multiplied  by  the  thickness  of  the  shell,  and  the  thickness  at 

each  point  is  proportional  to  the  attraction  at  that  point.  The  sum 

of  all  the  elements,  therefore,  of  either  volume  or  mass,  that  is,  the 

whole  volume  or  mass,  is  proportional  to  the  sum  of  all  the  attrac- 

tions upon  the  whole  surface.  But,  by  §  136,  the  sum  of  all  the 

attractions  upon  the  surface  is  proportional  to  the  included  mass,  if 

there  is  no  mass  at  the  surface.     If,  then, 

p  is  the  volume  of  the  shell, 

k  its  density, 

h  the  modulus  of  its  thickness,  or  the  thickness  which  corre- 

sponds to  the  unit  of  attraction  ; 

this  ratio  is  included  in  the  equation 

H  Ten 
KM        khM 

4:71, 

145.     If  a  Chaslesian  shell  which  is  ivholly  external   to  the  acting 

masses  of  the  si/stem  is  assumed  to  be  itself  the  attracting  mass  ; 
9 
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1.  The  potential  of  the  shell  is  constant  for  all  interior  points,  there 

is  no  tendency  to  motion  within  it,  and  its  own  outer  surface  is  its  level 

surface  ; 

2.  Its  external  level  surfaces  are  the  same  as  those  of  the  original 

masses  of  the  system,  and  the  attraction  of  the  shell  upon  a  point  external  to 

itself  has  the  same  direction  as  the  attraction  of  the  original  masses. 

To  demonstrate  these  propositions,  let 

S2S  be  the  potential  of  the  shell  for  any  point,  and 

£2  the  potential  of  the  original  masses  for  each  point  of  the 
shell  ; 

the  value  of  the  element  of  the  potential  of  the  shell  is 

Hence, 

In  passing  along  the  canal  of  the  trajectories  to  another  shell, 

the  ratio  of  d/.i  to  p  is,  by  §  143,  constant,  whence 

j-.   dSis  _  hd^D^f 

But 

DJ  =  DxNDNf  =  -  B.JYcosf, 

df.i  =  lido  DNS2  ; 

and,  therefore, 

d\i Dxf  =  —  h  do  DNS2  Dx  JVcos  *  =  —  hcla  D^  £2  cos  y , 

V^  —  -    —^  TV 

The   integral   of  this   equation  for  the  whole   surface    of  the 

d£2s 
Jcdfi 

dSi, 
Jcdfi 

[i
 

Vf 
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shell  is 

n  Si,   l-hDxSl  C  c°s/ 

1  (i 

J  a  J 

1.     For  an  internal  point   this  equation  becomes,  by  §§  135 

and  144, 

n  Si,   4akhD?Si   kD^Sl 

the  integral  of  which  is 

Q  _    kflSi 
M 5 

to  which  no  constant  need  be  added,  because,  when  the  dimensions 

of  the  shell  are  infinite,  £2  and  S2S  both  vanish,  since  all  the  points 

of  action  are  infinitely  remote  from  the  centres  of  action.  This 

equation  expresses  that  the  potential  of  each  shell  has  the  same 

value  for  all  internal  points,  and,  therefore,  there  is  no  tendency  to 

motion  within  the  shell,  and  the  surface  of  the  shell  must  be  level, 
with  reference  to  its  own  action. 

2.     For   an  external   point,  the    equation  (672)   becomes,   by 

§135, 

Hence,  by  integration, 

—  =  a  constant, 

which  constant,  however,  depends  for  its  value  upon  the  position  of 

the  points  of  action ;  but  since  it  has  the  same  value  for  all  the 

shells  to  which  the  point  is  external,  the  potential  is  constant  for 

the  same  series  of  points  external  to  one  shell  for  which  it  is 

constant  through  the  action  of  another  shell ;  that  is,  all  the  shells 

have  the  same  external  level  surfaces.  But  the  external  level 

surface,  which  is  nearest  to  any  shell,  differs  infinitely  little  from 
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the  level  surface  of  the  shell  itself,  and,  therefore,  the  surface  of 

each  shell  is  a  level  surface  for  every  included  shell.  Hence,  the 
external  level  surfaces  of  a  shell  are  the  same  with  those  of  the 

original  masses,  and  the  attraction  of  a  shell  upon  an  external  point 

has  the  same  direction  with  the  attraction  of  the  original  masses, 

and  is  normal  to  the  level  surface  passing  through  the  point.  This 
theorem  is  due  to  Chasles. 

146.  Every  infinitely  thin  shell,  of  which  the  surface  is  level,  from  the 

action  of  the  shell  itself,  must  be  a  Chaslesian  shell.  For,  if  another  shell 

is  constructed  upon  this  level  surface,  which  is  the  negative  of  the 

Chaslesian,  one,  namely,  which  is  repulsive,  instead  of  being  attrac- 

tive, or  the  reverse,  and  the  whole  mass  of  which  is  equal  to  that  of 

the  given  shell,  the  two  shells,  having  the  same  level  surfaces, 

exactly  cancel  each  other's  action  throughout  all  space.  The 
elements  of  mass  of  the  two  shells  must  then  be  absolutely  equal, 

but  of  opposite  signs  at  every  point.  For,  if  they  were  unequal  at 

any  point,  that  point  might  be  made  the  centre  of  an  infinitely  thin 

circular  element  of  the  combined  shells.  From  the  symmetry  of  its 

figure,  a  level  surface  for  the  action  of  this  element  alone  might  be 

made  to  pass  through  its  perimeter,  and  which  could  inclose  no 
other  mass  than  the  element  itself.  But  such  surface  cannot  be 

level  for  the  remainder  of  the  combined  mass  of  the  two  shells,  and, 

therefore,  the  value  of  the  potential  upon  this  surface  for  the 

combined  masses  of  both  shells,  including  the  circular  element, 

cannot  be  constant.  This  want  of  constancy  in  the  potential  is 

contradicted  by  the  fact  that  the  shells  balance  each  other's  action 

everywhere.  There  cannot,  therefore,  be  any  such  want  of  con- 

stancy, nor  any  point  for  which  the  element  of  mass  of  the  given 

shell  is  not  absolutely  equal  to  that  of  the  Chaslesian  shell,  although 

it  is  of  a  contrary  sign.  But  reversal  of  the  sign  of  the  action  of 
the  mass  does  not  interfere  with  the  Chaslesian  characteristic  of  the 

shell. 
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147.  Two  Chaslesian  shells,  which  are  constructed  upon  the  same 

surface,  only  differ  in  their  density  and  their  modulus  of  thickness.  For 

the  density  of  either  of  them  may  be  increased  or  decreased  until 

the  value  of  its  potential  at  the  common  surface  shall  be  equal  to 

that  of  the  other  shell.  If,  then,  its  action  be  reversed,  the  value 

of  the  potential  for  the  combined  shells  will  be  zero  both  at  the 

surface  and  at  an  infinite  distance  from  the  surface  ;  and  it  cannot 

have  any  other  value  in  the  intermediate  space,  otherwise,  there 

would  be  points  or  surfaces  of  maximum  potential  exterior  to  the 

acting  masses.  The  combined  surfaces  have,  therefore,  neither 

external  nor  internal  action,  and  the  reasoning  of  the  preceding 

article  demonstrates  that  the  component  shells  are  identical,  except 

in  regard  to  their  signs. 

ATTRACTION    OF    AN    ELLIPSOID. 

148.  An  infinitely  thin  homogeneous  shell,  of  ivhich  the  inner  and 

outer  surfaces  are  those  of  similar,  and  similarly  placed,  concentric  ellipsoids, 

is  a  Chaslesian  shell.  For,  if  upon  the  longest  axes  of  these  ellipsoids, 

as  diameters,  two  concentric  spheres  are  constructed,  each  sphere 

may  be  compressed  into  the  corresponding  ellipsoid,  by  reducing 

all  the  coordinates  from  the  centre,  as  origin,  parallel  to  either  of 

the  two  shorter  axes  of  the  ellipsoid  in  the  ratio  of  the  longest  axis 

to  this  shorter  axis.  But  all  points,  which  are  originally  in  the 

same  straight  line  remain  upon  a  common  straight  line  after  this 

uniform  compression ;  and  all  distances  which  are  measured  in  the 

same  direction  are  reduced  in  a  common  ratio.  But  the  thick- 

nesses of  the  spherical  shell,  measured  upon  any  straight  line  at  the 

two  points  where  this  line  cuts  the  shell  are  equal ;  so  that  the 

thicknesses  of  the  ellipsoidal  shell,  measured  at  the  two  points 

where  the  reduced  line  cuts  this  shell,  are  also  equal.     If,  then,  at  a 
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point  assumed  at  will,  as  the  vertex,  within  the  ellipsoidal  shell,  an 
infinitesimal  cone  is  constructed  and  extended  in  each  direction 

from  the  vertex,  till  it  intersects  the  shell,  the  relative  masses  of  the 

two  included  portions  of  the  shell  are  proportional  to  the  squares  of 

their  distances  from  the  vertex;  and,  therefore,  their  attractions 

upon  the  vertex  are  equal,  but  in  opposite  directions.  Hence,  the 

action  of  any  portion  of  the  shell  upon  an  internal  point  is  balanced 

by  the  action  of  the  opposite  portion,  and  there  is,  consequently,  no 

tendency  to  motion  within  the  shell  from  its  own  action.  The 

surface  of  the  shell  is  thus  proved  to  be  a  level  surface,  in  respect  to 

its  own  action,  and,  by  §  146,  it  can  be  no  other  than  a  Chaslesian 

shell. 

149.  This  proposition  may  be  enlarged  to  a  theorem  given  by 

Newton,  for  a  finite  shell,  of  which  the  inner  and  outer  surfaces  are 

those  of  similar  and  similarly  placed  concentric  ellipsoids.  Such  a 

shell  may  be  called  a  Newtonian  shell,  so  that  the  infinitely  thin 

Newtonian  shell  is  a  Chaslesian  ellipsoidal  shell.  But  the  Newr- 

tonian  shell  may  be  subdivided  by  similar  and  similarly  placed 

concentric  ellipsoidal  surfaces  into  an  infinite  number  of  Chaslesian 

ellipsoidal  shells,  each  of  which  is  inactive  with  reference  to  an 

internal  point.  Hence,  the  whole  Newtonian  shell  exerts  no  action  upon 

an  internal  point. 

150.  An  ellipsoid  may  be  converted  into  any  other  similar, 

and  similarly  placed,  concentric  ellipsoid  by  a  process  similar  to  that 

by  which  the  sphere  in  §  148  was  changed  to  an  ellipsoid  ;  that  is, 

by  increasing  or  decreasing  the  coordinates  of  each  point,  taken 

from  the  centre  as  origin,  and  parallel  to  either  axis,  in  the  ratio  of 

the  corresponding  axes  of  the  two  ellipsoids.  The  points  of  the  two 

ellipsoids,  which  correspond  in  this  process,  have  been  called  by 

Ivory  corresponding  points.  By  this  process,  any  Newtonian  shell 

may  be    converted   into    another   concentric    and   similarly  placed 
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Newtonian  shell,  and  at  the  corresponding  points  there  will  be 

corresponding  elements  of  volume. 

151.  The  corresponding  elements  of  volume  or  mass  of  two  corre- 

sponding Neiotonian  shells  are  proportional  to  the  volumes-  or  masses  of  the 
shells.     For  if 

Ax,  Ay,  Az  are  the  semiaxes  of  the  outer  ellipsoidal  surface  of 
one  shell, 

Bx,  By,  Bz  those  of  its  inner  ellipsoidal  surface, 
a  its  volume, 

m  its  mass,  and 

n  the  ratio  of  either  axis  of  the  inner  surface,  divided  by  the 

corresponding  axis  of  the  outer  surface  ; 

and  if  the  same  letters  accented  denote  the  same  quantities  for  the 

corresponding  shell,  the  construction  of  the  shells  gives  for  each 
axis 

Bx  =  nAx, 

X                X 

Ax        Ax 

and 11  =  ri ; 

and  by  differentiation, 
dx  Ax 

dx1        A7' 
The   volumes    and    masses   are    by   well-known   theorems   of 

geometry 

m  =  Jeo  =  jn  k  (Ax  Ay  Az  —  Bx  By  Bz) 

=  i7ik(l  —  n3)AxAyAz, 

m' =  7<f  o' =  j  7i  k' (I  — ns)  AxAyAz. 

The  ratios  of  the  elements  of  volume  and  mass  are,  then, 

da  dxdydz      _AxAyAz        a 

da'         dx'di/dz?         A'xA'yA 
'  A'    <t" 

X^M-yJ3.z  U 
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dm         kda         ha         m 

dm!         hda'         ho'         m' ' 

152.     If  the  older  surfaces  of  two  corresponding  Newtonian  shells  have 

the  same  foci,  their  inner  surfaces  must  also  have  the  same  foci.     For  if 

e 2  is  the  difference  of  the  squares  of  the  corresponding  axes  of 
the  outer  surfaces, 

the  condition  of  the  identity  of  foci  gives  the  equations 

p2      J 2       /j'2      /12       A'Z       /12       A'l 
c       J±x   J±x       J±y     Jiy      xiz    Jiz   . 

Hence,  for  each  axis,  there  is  the  equation 

so  that  the  foci  of  the  inner  surfaces  are  also  identical. 

153.  If  the  radius  vector,  from  the  centre  of  any  point  of  an  ellipsoid, 

is  projected  upon  the  radius  vector  of  another  ellipsoid  ivhich  has  the  same 

foci,  and  if  the  radius  vector  of  the  corresponding  point  of  the  second  ellipsoid 

is  projected  upon  that  radius  vector  of  the  first  ellipsoid,  ivhich  corresponds  in 

direction  to  the  projection  in  the  second  ellipsoid,  the  tivo  projections  are 

inversely  proportional  to  the  radii  vectores  upon  ivhich  they  are  projected. 
For  if 

o  is  the  radius  vector  of  the  first  ellipsoid  upon  which   the 

projection  is  made,  and 

£,  rj,  t,  are  the  coordinates  of  the  extremity  of  q  ; 

the  equations  of  the  corresponding  points  give,  for  each  axis, 

whence 

_  r    x  _  x'  t ■Ax       M-x             Ax 

I—  I 

x        xn 



or 

►7^ 

to 

lx'=l'x. 
But  if 

p  is  the  projection  of/  upon  q,  and 

p  the  projection  of  r  upon  (/, 

these  projections  are 

whence 

,       r'         ̂   a/$        2:r(^£) 
»  =  rcos    =  2lx — = — - — -, 1  Q  Q  Q 

P'         Q 

154.  The  difference  of  the  squares  of  the  radii  vector es  from  the 

centre,  of  two  corresponding  points  upon  the  surface  of  two  ellipsoids  which 

have  the  same  foci,  is  equal  to  the  difference  of  the  squares  of  their  semiaxes. 

For  the  equations  of  these  surfaces  are 

~2  ~/2 

2  —  =  1,  2  —=  1 
•At:  SI* 

The    difference    of    the    squares   of    two    corresponding   radii 

vectores  for  points  at  the  surface,  is 

r'2
 

=  2M(**  —  af*j=Zt[z*(l  —  ̂ )] 

155.  The  distance  of  any  point  upon  the  surface  of  an  ellipsoid, 

from  a  point  upon  the  surface  of  another  ellipsoid  which  has  the  same  foci, 

is  equal  to  the  distance  of  the  two  corresponding  points  of  the  ellipsoids  from 
each  other.     For  if 

10 
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/  is  the  distance  of  the  point  of  which 

x,  y,  z,  are  the  coordinates,  from  the  point  of  which 

£',  if,  'Cf,  are  the  coordinates,  and 
f  the  distance  of  the  corresponding  points ; 

the  values  of  these  distances  become,  by  (739_10)  and  (7324), 

/2  =  r2_j_(/2_29y 

/*  =  />  + Q*-2QP 
r 

,2 
+  o'2  +  e2-2o>' 2      I       ,  '2  O  , '    '  ^2 

whence 

156.  The  external  level  stir  faces  of  an  ellipsoidal  Chaslesian  shell  are 

those  of  ellipsoids  which  have  the  same  foci  ivith  the  order  surface  of  the 
Chaslesian  shell.     For  if 

£2C  is  the  potential  of  the  given  shell  for  any  point  of  the 

external  ellipsoidal  surface  of  the  same  foci,  and 

£lfc  the  constant  value  of  the  potential  of  the  corresponding 
Chaslesian  shell,  constructed  upon  the  external  ellipsoidal 

surface,  for  any  internal  point,  and,  therefore,  for  any 

point  of  the  surface  of  the  given  shell ; 

the  equations  (72x)  and  (7412)  give 

O 
J  m  J  J  in  J 

"c       Jm'f       J  mmf        mjmf     m       c 

The  value  of  S2C  is,  therefore,  constant  for  all  points  of  the 

surface  of  the  external  ellipsoid,  so  that  this  is  one  of  the  level 

surfaces  of  the  given  shell. 

157.    The  attractions  of  two  corresponding  Newtonian  shells,  ivhich  have 
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the  same  foci,  upon  an  external  point,  have  the  same  direction,  and  are  propor- 

tional to  the  masses  of  the  shells.  For  the  infinitely  thin  shell,  this 

proposition  is  a  simple  corollary  from  (7426).  But  the  finite  shells 

can  be  subdivided  into  corresponding  infinitesimal  shells,  and  the 

masses  of  the  corresponding  elementary  shells  will  be  proportional 

to  the  masses  of  their  respective  finite  shells.  The  attractions  of 

the  corresponding  elementary  shells  upon  an  external  point,  there- 

fore, coincide  in  direction,  and  are  proportional  to  the  masses  of  the 

shells;  and,  therefore,  the  components  of  all  the  corresponding 

attractions  have  the  same  common  ratio,  and  coincide  in  direction. 

But  the  components  of  all  the  elementary  attractions  constitute  the 

attractions  of  the  finite  shells  themselves.  Several  special  cases  of 

this  theorem  were  first  given  by  Maclaurin,  but  the  general  form 

was  first  demonstrated  by  Laplace,  and  afterwards  more  rigorously 

by  Legendre,  and  it  includes  the  case  in  which  the  inner  surfaces  are  reduced 

to  the  central  point,  and  the  shells  become  ellipsoids,  having  the  same  foci. 

158.  The  attraction  of  any  Chaslesian  shell  upon  a  point  at  its 

surface  is,  from  its  construction,  perpendicular  to  the  surface,  and 

proportional  to  the  thickness  of  the  shell  at  that  point.  The  attrac- 

tion upon  the  whole  surface  is,  therefore,  proportional  to  the  mass 

of  the  surface,  which  corresponds  to  §  136.     Hence,  if 

dN  is  the  thickness  at  any  point,  and 

p  the  perpendicular  from  the  centre  upon  the  tangent  plane  at 

that  point, 

the  attraction  of  the  ellipsoidal  Chaslesian  shell  at  the  point  is 

knkdN=  in]idro,o$N r 

a       7  dr  r =  4:7T/c — rcos r  p 

=  4:7tkp~. 
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The  component  of  this  action  in  the  direction  of  the  axis  of  x  is 

,     7    dAx       jsr 
4  7T  kp  -j-  cos     . 

If,  moreover,  the  equation  of  the  ellipsoid  is 

Z  =  ̂ .£  — 1  =  0, 

the  general  theory  of  contact  gives 

  2X  {xDxL) 

N         DrL  pDTL cos 

Hence, x     "s/O^)        2*(xDxL) 

2xxDxL  =  2Zx^2=Z, 

ai; 

N       px 

and  ̂ Ae  attraction  in  the  direction  of  the  axis  of  x  of  the  ellipsoidal  Chasle- 

sian  shell  upon  a  point  at  its  surface  is 

A.nJcp2x-~. 

159.  The  attraction  of  an  ellipsoidal  Chaslesian  shell  upon 

any  external  point  is  obtained  by  describing  the  corresponding 

Chaslesian  shell,  for  which  this  point  is  upon  the  outer  surface,  and 

the  attractions  of  the  two  shells  for  this  point  have  the  same  direc- 

tion, and  are  proportional  to  their  masses ;  so  that  the  attractions 

in  any  direction  are  proportional  to  the  masses.  If,  then,  the 

accented  letters  refer  to  the  outer  shell,  the  attraction  of  the  inner 
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shell  is 

,      ,  a     ,0    dA'r  .      7     a  p'2dAx 
4:71  IC—p  AX—rpr=  4  71  kX-,.,„      .      . a1  A 'J  o  Ax    Ax 

160.  The  condition  that  the  outer  surface  of  the  exterior  shell 

passes  through  the  attracted  point,  is  expressed  by  the  equation 

This  is  an  equation  of  the  third  degree  when  it  is  reduced  to 

its  simplest  form.  But  there  are  two  other  surfaces  which  can  be 

drawn  through  the  given  point,  and  which  depend  for  their  defini- 

tion upon  the  solution  of  the  same  equation.  They  are  two 

hyperboloids,  both  of  which  have  the  same  foci  with  the  outer 

surface  of  the  inner  shell,  one  of  which  is  a  bipartite,  and  the  other 

an  imparted  hyperboloid.  For  each  of  the  hyperboloids  e2  is 
negative,  and  its  absolute  value,  independent  of  its  sign,  is  contained, 

in  the  case  of  the  imparted  hyperboloid,  between  the  squares  of  the 

mean  and  least  axes  of  the  given  ellipsoid,  and,  in  the  case  of  the 

biparted  hyperboloid,  between  the  squares  of  the  mean  and  greatest 
axes. 

161.  The  points  in  which  all  the  ellipsoids,  which  have  the  same  foci, 

are  cut  by  the  common  intersection  of  the  tivo  hyperboloids  which  have  the 

same  foci,  are  corresponding  points.     For  if 

t2  is  the  value  of  —  e2  for  either  hyperboloid, 

the  equation  of  the  hyperboloid  for  the  points  of  intersection  with 

the  ellipsoid  is 

X2
 

2  — - —  =  1 

If  the  equation  (777)  of  the  ellipsoid  is  subtracted  from  this 

equation,  the  remainder  divided  by  e2  -j-  t2  is 
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1  (e2_^£/2)a;, V  vfc   ~Tb   >±.    y     Z        0 ■£-<  ,,    y     I   J        I  ON     /     J  1  /  0\           -"^  <r   /     A  •>.        I  OX     /•     A  ■>  I  ->\           \J  • 

in  which  #',  ,/,  and  /  are  accented,  in  order  not  to  interfere  with 
the  notation  which  has  been  adopted  for  the  corresponding  points, 

and  which  gives  for  each  axis 

Ax~    A'x~    i/QAl  +  ay 

The  substitution  of  these  equations  in  (78a)  reduces  it  to 

v 

7K  =  0; 
*A*(A>—  *'*) 

the  product  of  which  by  t'2,  added  to  (766),  is 
=  1. 

~*A%{A%  —  J*)  xAl  —  s'*—  ̂ > 

which  expresses  that  the  point  (x,y,z)  is  upon  the  surface  of  the 

hyperboloid,  and,  therefore,  all  the  corresponding  points  are  upon 

the  surfaces  of  both  hyperboloids. 

162.  The  hyperboloids  and  ellipsoids  which  have  the  same  foci,  inter- 

sect each  other  perpendicularly.  The  conditions  that  two  surfaces  of 

which  the  equations  are 

Z=0,  and2/=0, 

intersect  each  other  perpendicularly  is  expressed  algebraically  by 

the  equation  for  each  point  of  the  line  of  intersection, 

2X(DXZI)XL')=0. 

But  for  the  hyperboloids  of  equation  (7728)  and  the  ellipsoid  of 

equation  (766)  this  condition  becomes 

*Ai(Ai-s'*)       u> 
which  is  the  same  with  the  equation  already  given  in  (7810).     This 
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same  demonstration  may  be  applied  to  the  condition  of  the  perpen- 

dicularity of  the  hyperboloids,  if  A\  is  diminished  by  t'2,  and  a'2  is 
changed  into  the  difference  of  the  squares  of  the  semiaxes  of  the 

two  lrvperboloids. 

163.  It  follows  from  these  two  theorems,  which  are  derived 

from  Chasles,  that  each  normal  transversal  to  the  ellipsoidal  surfaces  of 

level  is  the  line  of  intersection  of  two  hyperboloids  ivhich  have  the  same  foci. 

164.  The  lines  of  intersection  of  these  three  surfaces  are,  upon 

each  surface,  the  lines  of  greatest  and  least  curvature,  for  they  are  a 

special  case  of  the  theorem  demonstrated  geometrically  by  Dupin, 

that  the  intersections  of  three  surfaces  ivhich  cut  each  other  at  right  angles 

at  and  infinitely  near  their  common  point  of  intersection,  are  their  lines  of 

greatest  and  least  curvature  at  this  point.  To  demonstrate  this  theorem, 

let  the  three  normals  to  the  three  surfaces  at  the  common  point  of 

intersection  be  assumed  for  the  axes  of  rectangular  coordinates,  and 
let 

be  the  equation  of  the  surface,  which  is  perpendicular  to  the  axis  of 

x.     This  condition  gives  for  either  of  the  other  two  axes 

D,£x=0, 

in  which  equation  x,  y,  and  z  may  be  mutually  interchanged,  except 

that  the  same  axial  letter  must  not  be  repeated  in  the  equation. 

Those  equations  satisfy  of  themselves  the  condition  (7825)  of  per- 

pendicularity of  these  surfaces  at  the  point  of  intersection.  But  the 

intersection  of  any  two  of  these  surfaces  coincides  with  the  axis 

wdiich  is  the  intersection  of  their  tangent  planes  for  an  infinitesimal 

distance,  and  the  two  surfaces  are  perpendicular  to  each  other  for 

this  distance.  Hence,  each  pair  of  surfaces  gives  an  equation  of  the 
form 

Dz  {DxLxDxLy  +  DvLxDyLy  +  DzLxDzLy)  =  0, 
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which  is  reduced  by  (7920)  to 

DXLXD X)ZLy  -\-  DyLyDyzLx  =  0. 

The  other  surfaces  give  the  corresponding  equations 

Dv Ly D 9t x Lz  -\-  DZLZD z  xLy  ==  0, 

DZLZDZ >yLx-\-  DxLxDxyLz  =  0. 

The  sum  of  the  products  obtained  by  multiplying  the  first  of 

these  equations  by  DZLZ,  the  second  by  —  DXLX,  and  the  third  by 

Dy  Ly  is 

2DyLyDzLzDlzLx  =  0, 

and  the  corresponding  similar  equations  are  obtained  by  advancing 

each  letter  to  the  following  letter  of  the  series,  x,  y,  z,  and  x.  But 

the  factors  DXLX,  DyLy,  and  DZLZ,  are  not  zero,  and,  therefore, 

these  equations  may  be  reduced  to 

L)y}ZLx  =  DxzLy  =  Dx  yLz  =  0, 

which  are  the  well-known  conditions  that  the  directions  of  the  axes 

of  x,  y,  and  z  respectively  coincide  with  those  of  the  lines  of  greatest 

and  least  curvature  of  the  three  surfaces  at  the  origin. 

165.  The  remarkable  relations  of  these  surfaces  might  be  still 

further  extended,  and  if  it  were  worth  while  to  investigate  the 

attractions  of  masses  of  infinite  extent,  it  might  be  shown  that  upon 

each  series  of  orthogonal  transversal  surfaces,  Chaslesian  shells  of 

infinite  extent  might  be  constructed.  The  level  surfaces  of  these 

shells  would  be  the  orthooronal  transversal  surfaces  of  the  same 

series,  while  their  orthogonal  transversal  surfaces  would  be  the  level 

surfaces  of  the  original  Chaslesian  shells  and  the  other  series  of 

orthogonal  transversal  surfaces. 

166.  To  investigate  the  attraction  of  an  ellipsoid  upon  an 

external  point,  it  may  be  supposed  to  be  divided  into  an  infinite 
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series  of  elementary  Chaslesian  shells.     Let  then 

Ax,  Ay,  Az,  be  the  semiaxes  of  the  ellipsoid, 

ax,  a,j,  az,  those  of  the  outer  surface  of  either  of  the  elementary 

Chaslesian  shells,  and  let 

_  ax   ay   a, 

Ac        A        A' If,  moreover,  x,  y,  0,  are  the  coordinates  of  the  attracted  point, 

Ax,  Ay,  Az,  are  the  semiaxes  of  the  ellipsoid,  which  has  the 

same  foci  with  the  given  ellipsoid,  and  whose  surface 

passes  through  the  attracted  point, 

ax,  dy,  dz,  the  semiaxes  of  the  ellipsoidal  surface,  corre- 

sponding to  the  outer  surface  of  the  Chaslesian  shell, 

and  passing  through  the  point  of  action, 

E2  =  A'X2  — A x,  and 
9       9.  ?2  2  '9  A  9       9 

e*n  =  ctx  —  ax  =  ax  —  Axir; 

the  values  of  E  and  £  are  the  roots  of  the  equations 

-   -   —  I 

C2       ±  1 

xAl-\-E 

=  1js 

xa2+t2n2        n2      xAl-\-z2~~~ 

The  attraction  of  the  Chaslesian  shell  upon  the  external  point 

in  the  direction  of  the  axis  of  x  is  by  (772) 

.      7     aj.auazp'2    dax  .      ,     axayazp'2  dn 
t:  JL  to  JU         T~r>     7     y  •      \k.  J  L  fi  U/         ~r~o     7     T~  •  5 

axayaz       ax  axauaz      n 

in  which  the  value  of  p    is,   by  equations   (769_18),  given   in   the 
form 

1 
= 

UL 

X1
 

/» 

D5 ,{xDxL)Y~ 
= 

5; 

X2 

:  (a2 -|- s2ra2)2 
11 

-±2 

M4         ■ 
(Al+ey 
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The  differential  of  (812i)  after  it  is  multiplied  by  n2  is 

whence  by  (Sl31) 

11s
 

(in  =   77,  c  d c  . 

p  -
 

This  value  reduces  the  attraction  of  the  shell  in  the  direction 

of  the  axis  of  x  to 

,      ,     ara„a,n^     7  ^      n  ArA„A~d.s2 
—  4 7i kx    ,1  ,. ,  'cat  =  —  Inkx- 

The  integral  of  this  expression  is  the  attraction  of  the  whole 

ellipsoid.  The  limits  of  integration  correspond  to  the  values  of  a, 

for  one  of  which  the  shell  is  evanescent,  and  for  the  other  its  surface 

coincides  with  the  surface  of  the  ellipsoid.  But,  when  the  shell 

vanishes,  n  is  zero,  and  e  is  infinite  ;  and  Avhen  its  outer  surface 

coincides  with  that  of  the  ellipsoid,  n  is  unity,  and  e  becomes  E. 

Hence,  the  expression  for  the  attraction  of  the  ellipsoid  in  the 

direction  of  the  axis  of  x  is,  if 

M  is  the  mass  of  the  ellipsoid,  and 

./Tits  mean  density, 

ao 

DM ?jMx  r 

T7-2 +  £s)v/[(^  +  £*)(^  +  0(^  +  £2)] 

By  advancing  each  letter  in  the  series  x,  y,  e,  and  x  to  the  follow- 

ing, the  corresponding  expressions  are  obtained  for  the  attractions 
in  the  directions  of  the  other  two  axes. 

167.     By  the  substitution  of 



the  equation  (S224)  becomes 
oo 

r>__3Mxr 
-"<   K  K 

168.     By  the  substitution  of 

A 

hxh%sim  +  Al-A${bl  +  Al-Al)y 

;   ,  and 

6, 

u  —  —  • x  —  A' ' 

the  equation  (833)  becomes 

DM 3  3Tx  C  hul 
  3  M x  r 
~  KTju. 

*Jl{A%-\-v.%{A\  —  Al)}(Al-+Ul(Al  —  A'))] 

which  formula,   with  transformations    similar    to    the    following,    is 

given  by  Legendre. 

169.     If  Ax  is  assumed  to  be  the  greatest  of  the  semiaxes  of  the 

ellipsoid,  and  Az  the  least,  let 

2  Al  +  e* i         Ax-]-^' 
.    2.       Al  —  A% sm^  =  -,T   j|, Ai  — Ay 

sin  &  =  sin  i  sin  cp , 

a-         Al  +  E* 

sin  0  =  sin  i sin  CP ; 

and   let   the  first  and    second   forms  of  the    elliptic   integrals   be 
expressed  by  the  notation 

9^(jp  —  /  sec$, 
J  d> 

0    T
 

&iCp  =  /  cos$. 

J  6 

0   r 
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These  equations  give 

e2sin29  —  A2xcos2cp  —  Al, 

(A2y  +  e*)sm*(p  =  Al  —  Al-\-(Al  —  A2X)  sin2  tP  =  (A2X  —  A2)cos26, 

(Al  +  z2)sm2tp=Al  —  A2, 
(Al  +  z2)  sm2  tp  =  (A2x  —  A2z)  cos2  y; 

sin2(pd.a2=  —  (Al  -f-  a2)d.sm2(p  =  —  (A2X  —  J.2)cosec29<#.sin2<p, 
d.i2  =  —  2  (A2X  —  A2,)  cosec3cpcos(pdcp  ; 

which,  substituted  in  (8224),  reduce  the  expression  for  the  attraction 

in  the  direction  of  the  axis  of  x,  when  the  ellipsoid  is  homogeneous, 
to  the  form 

Djl  =  SM.v  f  ;i;>se??a  =   5*1    /%(.<)  _  cos^)) 

=  ,<*    ̂ '.  ,.(9W'-M>); (Ax  —  A*)*Bmh 

.f  p  _  3M  _  3M 

the  attraction  is 

x  sin2iv     l  l      ' 

The  same  substitution  gives   the    attractions   parallel   to    the 
other  axes  in  the  forms 

Dy  S2  =Py  i  sin 2  9  sec 3  <3 , 

0  ̂
 

DJ2  =zPs  f  tan2  g)  seed. 

0  ' 

But  the  differential  of  the  logarithm  of  (8321)  is 

cotAZM  =  cote/), 

and,  therefore, 

ZM  =  tan  £  cot  9, 
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D,  (tan  (p  cos  d )  ==  sec 2  (p  cos  d  —  sin 2  (.1  sec  (1 

z=  secd(sec2cpcos2d  —  sin2d) 

=  sec  d  sec 2  cp  —  sec  d  sin 2  d  (sec 2  9  -j-  1 ) 

=  secdsec2(p  —  seed  sin 2a'( tan 2<p  -]-  sin2cp) 

=  seed  -|-  cos2 i sec d tan2 9  —  secdsin2d 

=  cosd  -J-  cos2? seed  tan2 9, 

_,    ,  .                          .  N         _D,h  (tan  0  cos  op)         cos  w  cot  ai  sec 2  0  tan  (9  —  tan  f)  sin  en 
2),  ( sin  if  cos  rp  seed)  =     p      .    . — —  =  —   —    —r—.   - 9 x         *  '  '  sin  i  sin  1 

=  cos2y  sec3d  —  secdsin2cp 

=  —  cos2?'sin2(/)sec3d  -j-  (1  —  sin2c/)sin2?')sec3d 
—  sec  d  sin  2cj) 

=  —  cosJ«sm-'c/)secdd  -j-  seed  ( 1  —  .  /.I 

=  —  cos2?'sin2cpsec3d  -A-  -^— ■ -(cos2d  —  cos2?') '  '     sin -% v  y 

=  —  cos2?'sin2<psec3d  —  cot2? seed  -j-  cosec2/cosd. 

These  equations  reduce  the  attractions  to  the  forms 

* 
_      ,-,  -r.         C  rSCC2/cOS^   SCC#  9  •  t->     /    •  a\1 

D,j  &  =  Pi/ J  . !        -sin  5 f-   sec  1 D^  ( sin  9  cos  93  sec  d )  J 

0  ̂ 
=  P^/(

^cos
ec22

?Si<
f»  

—  cosec
2a'9^

<£»  

—  sec2
?sin

c/Jc
oscf

,sec
0), 

Dz£l  =  sec2iPz  j  [Z>6  (tan cp  cosd)  —  cosd] 

0  ' 

=  sec2?*Pg(tan*cos0 —  &icP). 

170.    The  following  values  are  derived  from  (8323-24)  and  (8115); 

2    ,   __  ̂ Tj  +  i?2  __  ̂ _2 C0S^  —  Jf+^s  — 2T" 

•    2rr>__^'  —  A\__A'*  —  A'* sm    i  _^_p-^_       _      f 

sin20-  -^"    "^''       J'2    'A? Ai+w f'2        J 
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2  Q  _  Al  +  E*  __  A? cos   v  —  Al^_Ei  —  A,.„ 

.    2._A\.  —  A*„_A'*  —  A'* Sm   l  —  A%—  Al~~A?  —  AT 
A'l       A  2  An       A'l 

cos  1  =  a'i=a*  =  a?-a?- 

The  equations  of  the  attractions  give,  by  means  of  these  values, 
that  of  P  and  (8115), 

sJ^=:22xDx>-n  =  sec2/Psin<l>sec<£sec0(cos20  —  cos2*) 
3M  ,      M 

4:71 —  A'xA'yA'z—  —If 

This  simple  equation  is  due  to  Legendre,  and  the  first  of  the 

two  following  equations  which  are  obtained  by  the  same  process  of 
reduction. 

A';2DX&   9       ( A'z-n»Q\           ̂ M       os  cB 

AlDrSi_22  (A2D«M\  —   3-^-      %.&   in JE2  — 
^x       x       —^-xk^x^—J—^Al  —  Al)0*  M'' 

171.     By  putting 

CO 

the  attractions  may  assume  the  form 

Dx£l=—ZMxDA-2  L, x 

Djl=  —  ZMzDA*  L. 

in  which  the  differentiations,  relatively  to  A\,  A2,,  and  _42,  are 
performed  without  regard  to  the  changes  of  E,  dependent  upon  the 

formula  (81J5). 
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172.     The    equation    (8119)   may,  by  means  of  the   equations 

(842_T)  be  written  in  the  form 

or  by  the  substitution  of  the  value  of  0  from  (8324), 

x*-\-z*sec2®    ■  y2  1 
il         I 

A%  —  A%        '    Al  cos2  (p-\-Al  sin2  (D  —  A\        sin20>" 

173.  When  the  attracted  point  is  upon  the  surface  of  the  ellipsoid,  E 

vanishes,  and  the  value  of  0  becomes 

COS<P:=-^. 

174.  When  the  attracted  point  is  within  the  ellipsoid,  the  Newtonian 

shell,  of  which  the  outer  surface  is  that  of  the  ellipsoid,  and  the 

inner  surface  passes  through  the  point,  exerts  no  action  upon  the 

point,  and  the  attraction  is  reduced  to  that  of  an  ellipsoid  similar  to  the 

given  ellipsoid,  and  of  which  the  surf  ace  passes  through  the  attracted  point. 

175.  When  the  density  of  the  ellipsoid  varies  in  its  interior, 

in  such  a  way  that  each  of  its  component  Chaslesian  shells  is  homo- 

geneous, It  is  a  function  of  e,  and  after  its  substitution  (8224)  may  be 

integrated. 

176.  When  the  ellipsoid  is  a  homogeneous  oblate  ellipsoid  of  revolution 
the  various  formulae  become 

A^      =      Ay, 

i=$  =  0 

x 
+  «?/24-s-2  +  s2tan2^  =  (^l  —  ̂ )(l-f  cot2<£); 

s2tan4<£  -f  (r2  —  A\  -f  .A2)  tan2*  =  A\  —  A\ ; 

Dx il  =  Px  C  sin2?  =  \Px{2 <P  —  sin 2 <P) , 

0 
 * 

$ 

Dyil  =  Pg  f  sin2g)  =  |P^(2<£  — sin2<£), 
U  6 
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DJ2  =  Pz  ftanhp  =  P.e (tan*  —  *) . 

0  
' 

177.      FFAera  //^  ellipsoid  is  an  homogeneous  prolate  ellipsoid  of  revolu- 
tion, the  formulae  become 

A  = 

=  A*. 

i- 

-\n 

cp  = 

=  A, 

a?»+y»-+a«  +  (y"  +  0»)tan»*=(^  — -A»)(l  +  cot»*), 

(y 2  +  z1)  tan4*  +  (r2  —  4»  —  4")  tan2*  =  A\  —  A\ 

I2- 

2^X2  =  Pa;  /  sin2g)sec9 

0   
 ̂ 

=  Px  [log  tan  (-1 rr  -f-  i  *)  —  sin  *]  , 

Dyfl  =  Py  /  sin2 ^ sec3 9 

o  ̂ 

=  |-P#
  
[si

n*s
ec2

*  

—  log
tan

 
(|- tt  -j- 

 
|  *)] 

 
> 

■Z/^iO  =  Ps  J  sin2(j)sec3g) 
0 

=  iPg[sin*sec2*  —  logtan  {{n  +  |-*)]. 

ATTRACTION    OF   A    SPHEROID.      LEGENDRE's    AND    LAPLACE'S    FUNCTIONS. 

178.  The  investigation  of  the  attraction  of  a  spheroid  is 

greatly  facilitated  by  the  introduction  of  certain  functions  which 

were  first  conceived  and  investigated  by  Legendre,  but  which 

became  so  fruitful  in  their  more  general  form,  given  in  the  subse- 

quent researches  of  Laplace,  that  they  are  usually  designated  by 

the  name  of  the  latter  geometer.  A  method  will  be  pursued  in 

their  development  and  discussion  which  is  similar  in  some  respects 

to  that  given  by  Jacobi. 
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170.     Let 

11=  cos (p  -f-  asm cp cost], 

and  if  any  power  of  II,  denoted  by  n,  is  developed  in  a  series  of 

terms  arranged  according  to  the  cosines  of  the  multiples  of  i],  let 

any  one  of  the  terms  be  denoted  by 

in  which  \_m~\  denotes  the  number  of  accents  of  CP.  The  required 
power  has  then  the  form 

II'1  =  2m  (im  <P™  cos  m  i] ) . 

   00 

180.  The  value  of  i/"is  not  changed  by  reversing  the  sign  of 
i],  and,  therefore,  the  series  remains  unchanged  by  this  reversal  of 

sign,  which  gives 

or  <P\~  mi  =  ±  &w  =  (—  1 )'»  <p™ ; 

in  which  the  upper  sign  corresponds  to  the  even  values  of  m,  and 

the  lower  sign  to  the  odd  values  of  m.  The  equation  (89n)  may 
also  be  written 

Hn  =  <Pn  -\-  22m(im<P™cosmr)). 

181.  The  integral  of  the  product  of  (8922)  by  cosmi]  is,  by  a 
well  known  theorem 

f  (Hn cosmi])  =2 71  im<P[™\ 

0  v 

The  derivative  of  this  equation,  relatively  to  (p,  reduced  by  the 
condition 

D^  H=  —  sin (p  -\-  /cosy  cosi; , 

12 
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becomes 

2- 

2nimDlk<P[™']  =  n  I  [_Hn~1cosmi]  ( —  sine/)  -\-  icoscpcosi])'] 

U  n 

o 

2,r 

=  11  J   [jST"_1( — sm(pcosmi]-\-^icos(p(cos(m-\-l)i]-\-cos(m — I)1]))]  ; 
0 

whence,  by  (8927), 

D^ <P™  =  —  n sin qp *Wj  4-  \ n cos <p  ( *[;"__! 1]  —  *£!^1]) . 

182.     The  derivative  of  (SO^),  relatively  to  1],  reduced  by  the 
condition 

D  H=  —  z'sin  (p  sin  ij 
becomes 

oo 

in  Hn  ~ 1  sin  ip  sin  i]  =  2  2l7!1  (in  im  0[^  sin  in  i] ) . i 

The  integral  of  the  product  of  this  equation  by  smmi]  is 2tt 

in  sin  <p  j    ( Hm  ~ l  sin  i]  sin  m  -jj  )  ==  2  tt  m  /OT  «£»£*] , 0 

or 

6 

which  becomes  by  (8927) 

in  9  f  [#"OT  - a  (-|  cos  (m  —  1 )  i;  —  £  cos  (m  -\-  1)  ij )]  =  2  re  m  im  <P™ 

183.     The  equation  (892T)  may  assume  the  form 

J[_IIn~J(cos(pjcosm,)]-\-:kismcp(cos(m-\-l)i]-\-(cos(m — l))~\=2nim  <P[™\ V 
0 

which,  reduced  by  (8927),  gives 

<pw  =  cosy  <££*-!  i  +  I  sine/)  ( £fc1]  —  *L'-+i1])- 
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184.     The  remainder,  if  (908)  is  subtracted  from  the   product 

of  (9024),  multiplied  by  cotcp,  is 

rf/»>~l
 

=  smm  +  1cpl)c0,,-^-. '       C0B  V  sin '"  cp 

The  sum  of  (9021)  and  n  times  (9031)  is 

ncosqp  $£*!.!  +  wsinc/)c£»[r-l1]  =  (n  -j-  m)cP\l"], 

the   first   member   of  which   becomes   identical  with  that   of  the 

previous  equation,  when  m  is  increased  by  unity.     Hence, 

*f;"+1:  _  1  n     0™  sin  cp         n         Of** 
sin '"  cp  n  -)-  m  -)-  1      *  sin '"  cp         n  -\-  m  -\-  1      cos  0  sin '"  qo ' 

or,  if  m  is  diminished  by  unity 

sin "'  (p         n-\-  m     cos ^  sin m~ 1  cp ' 

If  the  sign  of  m  is  reversed  in  this  equation,  it  becomes  by 

(8917) 

ain-g>#M  =  ;^Z>„#(ain"+1g>#£,1+1i). 

185.     It  will  be  found  convenient  here  and  elsewhere  to  adopt 
the  functional  notation 

i 

rh=fx{-\og.z)\ 0 

which  gives,  by  a  familiar  formula,  or  by  simple   integration  by 

parts,  when  h  is  positive,  and  k  an  integer,  which  is  less  than  h  -f-  1, 
i 

rh  =  h(h  —  1)(A  —  2)   (A  —  A  -J-l)£(_  log*)*-* 0 

=  A(A  — 1)(A  — 2)   (A--A-j-l)r(A-^A), 
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and 

*(*_1)(*_2)....(*_*  +  1)  =  J^. 

When  h  is  an  integer,  and  k  the  next   smaller   integer,  this 
formula  becomes 

1.2.3   h  =  rh. 

With  this  notation,  Taylor's  theorem  assumes  the  form 
<& 

186.     The  equations  (9116)  and  (9120)  give,  by  successive  sub- 

stitutions in  each  other,  and  the  use  of  the  preceding  notation, 

sin"!<p  cos^  sinm>  i^'T'V^     sin'"' 9' 

(—  1)"IT(m  —  w)sinm«p*£"]  =  (—  1)T(«  —  w')£^m(siiT'g>#£,,'])  5 

in  which  negative  differentiation  must  be  interpreted  to  be  integra- 

tion ;  in  the  former  equation,  when  n  is  negative,  in'  — | —  ?z  — | —  1  and 
m  -j-  w  -j-  1  must  be  positive ;  while,  in  the  latter  equation,  n, 

n  —  m  -\-  1,  and  n  —  in'  -\-  1  must  all  be  positive.  When  n  is  posi- 

tive, but  11  —  m  -\-  1,  and  n  —  in'  -f-  1  are  negative,  the  equation  to 
be  substituted  for  (9215)  is 

$mmcpQ>™         _  D'^m  (sin'"' cf^;"'1) 

I\m  —  n  —  l)  ~  l\m'  —  n  —  l)      ' 

which  equation  is  also  to  be  used  when  n  is  negative.  When  n  and 

11  —  m-\-l  are  positive,  but  n  —  in  -j-  1  is  negative,  the  combina- 

tion of  (9215)  and  (9223)  gives,  by  representing  by  ii',  the  greatest 

integer  contained  in  n  -\-  1, 

(_  1) «'-»r(n  —  m)  smmq,cp^    />'  —  n  —  1) Jg^"  (sm^xpOT'1) 
I\n  —  n')  I\m'  —  n  —  l) 

When  11,  11  -j-  mf  -f~  1,  and    m  -\-m-\-l   are    all   negative,   the 
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equation  to  be  substituted  for  (9213)  is 

r(—l—n  —  m)sm'"q)         l\—l—n  —  m')      cos0     sin'"'  cp ' 

When  n  and  n  -J-  »*'  -|-  1  are  negative,  but  m  — (—  «  — |—  1  is  posi- 
tive, the  combination  of  (9213)  and  (933)  gives,  by  representing  by 

nr,  the  greatest  integer  contained  in  —  1  —  n, 

r(m-\-n)0»i     (_l)»'-»T(-l-n-»i')  /,ffl_B,  0^ 
r(n-\-n')smmcp  I\—l  —  n  —  m')  cos0     sin'"V 

There  are  peculiar  considerations  which  simplify  the  investiga- 

tions, when  11  is  integral,  whether  it  be  positive  or  negative  ;  and 

these  are  the  cases  to  which  most  of  the  subsequent  investigations 
are  limited. 

187.  By  reducing  m  or  mr  to  zero,  the  equations  of  the  pre- 
ceding section  give,  for  positive  values  of  n, 

<j*"]  =  rv  F,\    N  sin"? Z?"    <fi»  =  (—  IV*—   T\  .  m     fm  <Pn F(m-\-n)  J       cos^      »         v  j    r(/l  —  ?ii)sm'"(pJC0S(j)      " 

,       -.w  Fnr(m  —  n  —  l)  P>»      , 

\       x)     r(n  —  „')/*(»'  — »  —  l)  sin»q)  J  cos  <p      "' 

and  for  negative  values  of  n 

$W,        />-*-- 1)        f«    ̂  
J-(— 1— n)sin>Jcos0      n 

  ( — 1)'".T( — 1 — ?t — m)    .    m     j-)m      * 

~  r{m  +  n)  /'(—  1  —  n)  Sm  ̂ cos  *  *  » ' 

188.  IFifo??  7?  is  zero,  it  is  easily  seen  that 

K°=1  =  <P0, 

and  that,  for  all  other  values  of  m 
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189.  When  n  is  a  positive  integer,  and  h  is  also  a  positive  integer, 

the  equation  (918)  gives 

(272  -(- h) <P%  + h]  —  n cos (p <PHl±i]  +  n sin cp <P%Zi  + /,] . 

If,  then,  the  terms  of  the  second  member  vanish  for  any  value 

of  n,  they  will  also  vanish  for  the  next  higher  value  of  n.  But  they 

vanish,  by  the  preceding  section,  when  n  is  zero,  and,  therefore,  they 

vanish  for  every  positive  integral  value  of  n  ;  that  is, 

Cbfr  +  h]     A M     n         \J   . 

or  the  series  is  finite  for  positive  integral  values  of  n,  and  contains  onlg 

ii  -\-  1  terms. 

190.  The  substitution  of  the  preceding  equation  in  (918)  gives 

<£M  =  i  sin  cp  <&f-p  =  ( I-  sin tp )m <P\?Z™] 

=  ( \  sin  cp  Y  0O  =  —  sin"  cp . 

which  equation,  substituted  in  (9316),  gives 

®n  =  {^f  A"os^( *lT]sin"9)  =  ̂jrD'U{—  sin »" ; 

rf,[»»]  —  .   sm"l(p   7}»  +  ™  c   sin2fDvi 
rn    —  2-r(m  +  n)      cos^    ̂   ^ 

—  2T(n  —  m)sinm<p     cos4>   ̂        bm   ̂     ' 

£y  20/^  ̂ Ae  coefficients  of  the  development  are  obtained  when  n  is  a  positive 

integer. 

191.  When  n  is  the  negative  of  unity,  the  equation  (8927)  gives 

o 

But  the  value  of  II  gives 
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1  1  cos  cp  —  i  sin  qp  cos  jj 

II        cos  cf)  -\-i  sin  cp  cos//         cos  a  qp  -j—  sin  2  gi  cos  -  ̂  

i  sin  cp  cos  t]         ■  cos  qp 

1  —  sin  2  qp  sin 2  rj    *^  cos 2  /;  -\-  cos 2  qp  sin  2  /; 
^  i  sin  cp  cos  ij  \  i  sin  ft  cos  i\      ,        cos  qr  Dv  tan  ?/ 

1  -(-  sin  qp  sin  j?         1  —  sin  qp  sin  //    '     1  -|-  cos 2  ft  tan  2  j/ ' 

the  integral  of  which  is 

/    77  =  —  4- 2  log     -J- sin  <y> sin q    ,     ̂   t_ i]  / CQg     ̂ ftn    \ 
J  ?///  -1        °1  —  sin  ft  sin  ?/    '  v        '  ' 

Hence,  by  passing  to  the  limits 

2n0_1=  2  n, 

When  «  and  ra  vanish,  equation  (9031)  becomes 

<P0  =  cos  <p  <&_ !  —  sin  <p  <P'_  j , 
whence 

r  /■  1    COS  ft  .  -, CP,  =   :    =  —  tan  i  (o , 

sin  ft  ^  ' 

Equation  (9213)  gives,  then, 

AM  —   sin'"^   7>m-1sP02lm 
**-i  —         2J'(m-l)      cosreC    2^' 

192.  When  n  is  any  negative  integer,  it  is  more  convenient  to 

write  the  formulas  with  the  sign  of  n  reversed.  With  this  change, 

the  sum  of  the  product  of  (9031)  multiplied  by  ( — nsiny),  that 

of  (908)  multiplied  by  cosy,  and  that  of  (9024)  multiplied  by 

( — cosecy)  becomes 

«<£^(t+u  =  cosy  DA*™\  —  («shi<p  -f  -¥-) <P[™1 '  \  ol  11  u  / 

sin»-iftn    «ea       /ff)      -,,  .      ,  B+i-»\*h] 
=   -^  -v-s=i   ( ( 2  n  —  1 )  sm  w  -\   -.   )  <Ptl"  t  ; sec  ft        9  sin "    1  cp         V  '         '      '  sin  ft       / 

which,  when 

m  =  n  —  1 , 
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is  reduced  to 

The  successive  substitution  of  1,  2,  3,  &c.,  for  n,  gives,  by  means 
of  (9112) 

r  sin  "    A  <jp 

T  r„l  2«     1       .  -rr,,         11  2n(2ll      1)       .  -,r„  ,-, 

*^](„  +  l)  =   T~  Sm  (P  *-*      =   2^T-    sm  9  *-^  ] 

2 "  (/'») : 

The  substitution  of  this  value  in  (932i)  gives,  by  (9420), 

*-<.+u  =  7^^W(sin>clJ-Wa))  =  2^^cos^(—  sin»"=  <Pn; 

and,  therefore,  for  all  values  of  m  less  than  n  -J-  1, 

  /   -I  \m  r(n  —  m)r(n  +  m)    ~  [m] 

v       >  {my  n  ' 

The  equation  (918)  gives,  when  m  —  n  vanishes,  by  (960), 

&-V4d  =  —  cot9>*w„+1)=2^-2(—  BnyJ-^cosy; 
whence,  by  (9024) 

*^Sii,  =  —  2cosecy *w.  _  <*>[»- ri  ]}. 

From  this  equation  the  successive  values  of  cPll]n  may  be  deter- 

mined by  successive  substitution  of  1,  2,  3,  &c,  for  n,  or  they  may 

be  determined  by  the  equation  derived  from  (9120)  and  (969), 
cos<4 

<£[»  +  !]      _(2n  +  l)r(2»)        1        f     ,         .    ,    y 
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The  remaining  coefficients,  in  which  m  is  greater  than  n,  are 

then  to  be  determined  by  the  equation  derived  from  (9213) ; 

<£[»]  _      sin'"9     rm-n  ®-l -•        r(m  — m)     cos0  sin>" 

193.  In  order  to  apply  the  preceding  investigations  to  the 

problem  of  attraction,  it  is  requisite  to  introduce  the  form  of  polar 

coordinates,  of  which  zenith  distance  and  azimuth  is  the  familiar 

instance.     For  this  purpose  let  the  following  notation  be  adopted  : 

(jfyis  the  angle  which  a  line /makes  with  the  axis, 

&f  is  the  angle  which  a  plane,  drawn  through  the  axis,  parallel 

to/,  makes  with  the  primitive  plane. 

The  distance  /,  between  two  points,  of  which  the  radii  vectores 

are  r  and  o,  is  given  by  the  equation 

/2  =  r2-f-  o2  —  2ro(cos</vcos(^-(-  sin  9V  sin  9)  cos  (t\. —  6  )) 

—  r     1    9   —  2  or  cos  . 

Hence  the  notation 

i=\/—  1, 

Hf  =  cos(pf  -f-  ism  (pfcos  (i]  —  3f) , 

gives 

+fHf  =  +/cos  (ff  +  ̂/sin  9ycos  (t]  —  &f) 

=  rcos(fr  —  ()cos(pp  -f-^cos?j(rsin9vcos$r —  osinro  cos^0) 

-j-  ismi]  (rsm(prsm&r  —  osiny  sint)  ) 
=  rHr-qIIp; 

in  which  the  upper  sign  is  to  be  used  when  r  is  greater  than  0,  and 

the  lower  sign  when  r  is  less  than  0. 

But  it  follows,  from  §  191,  that 

/        *27tJvfH       -r27tJririrr  —  Qirp 
0  0  ' 13 
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2tt 

o  o  ' 

in  which  the  upper  sign  corresponds  to  r,  greater  than  o,  and  the 

lower  sign  to  r,  less  than  q,  and  the  series  represented  by  the  fourth 

member  corresponds  to  the  former  of  these  two  cases,  while  the 

series  represented  by  the  last  member  corresponds  to  the  latter 
case. 

194.     If,  in  the  development  of  the  preceding  series, 

Qn  is  the  coefficient  of  -^+y,  and 

Q'n  is  that  of  ~ ; 

the  series  become 

The  values  of  the  coefficient  in  these  series  are  determined  by 

the  equations 

o 

2tt 

V*  —  27tJvEpim 

o         r If  the  additional  notation  is  adopted,  corresponding  to  (897) 
CO 

II;  =  [r]m  -J-  2  2m  {im  [r]M  cosm  (rj  —  6,)) , 

the  values  of  the  coefficients  become 

Qn  =  M-  M-e+u  +  2i„((-  l)w  M?1  [r]?).+i,cosm(flp  -  d,)), 

Q:  =  H.  M-c+i,  +  2  ̂OT((-  1)*  [r]W  M?UiCosm(flp  -  4,)). 
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Hence,  by  (9618)  and  (9316), 

Qn=  Q:=  M.[g].+2fw(r("~"/)yy,"h,,)  MS"1  MS*1  cob«  (dp  -  <),)) 

=H.M,+2i,(J^^ 

195.     The  equation  (458)  gives  for  the  value  of  the  potential, 

Hence,  by  the  notation 

Un=f{lcQnQ«),       ' 

ir  -  f  *« the  potential  becomes 
co  7-r  oo 

X>  =  2  — -  ■=  ,2  C  Z7V) . 
o     ?  o 

"With  the  notation  of  (5823_27)  and  (97i0)  these  values  become 

do  =  Q2di}'d()  =  ()2smcp  d(fpd&pd(>, 

The  first  form  of  12  in  (9917)  is  to  be  used  for  all  values  of  o 

less  than  r,  and  the  second  form  for  all  values  of  (>  greater  than  r. 

If,  then,  Jc  is  supposed  to  vanish  for  all  points  of  space  in  which 

there  is  no  attracting  mass,  the  limits  of  integration  for  the  value  of 

TJn  must  include  all  the  attracting  mass  for  which  ()  is  less  than  r, 

while  those  for  U'n  must  include  all  the  attracting  mass  for  which  o 
is  greater  than  r. 
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196.  By  substituting  in  (992i_23)  the  values  of  Qn  given  in 

(992)  the  resulting  values  of  Un  and  U'n  have  the  same  form  with 
Qn  so  far  as  the  elements  of  the  direction  of  r  are  involved ;  so  that 

the  value  of  the  term  of  Un  which  depends  upon  the  angle  m&r  has 
the  form 

[r]L'"]  (AH"]cosm6r  -j-  B[™hmmAr), 

in  which  A1,'"'*  and  B{™]  are  independent  of  the  form  of  the  body, 
and  the  number  of  such  constants  included  in  the  most  general 

value  of  Un  is  2  n  -f-  1. 

197.  It  is  expedient  to  introduce,  at  this  point  of  the  discus- 

sion, some  important  properties  of  Legendre's  functions.  The 
following  theorem,  given  by  Poisson,  is  of  especial  use  in  facilitating 

their  investigation. 

If  JVP  denotes  any  function  of  the  elements  of  direction  of  q,  and  if, 

after  the  performance  of  the  integration  expressed  in  the  second  member  of 

the  following  equation,  Q  is  made  equal  to  r,  ivhich  condition  is  intended  to  be 

denoted  by  the  subsequent  parenthesis,  the  second  member  ivill  be  reduced  to 

the  first  member,  that  is, 

N'  =  i-«)f    /•       [?  =  '•]' 

0    ' 

To  demonstrate  this  theorem,  it  is  to  be  observed  that  all  the 

elements  of  the  integral  vanish,  except  those  for  which 

f=0, 
that  is,  for  which 

1'  r> 

r  =  Q,  Q 

If,  then, 

i]  denotes  the  angle  which  the  plane  of  r  {)  makes  with  any 

assumed  fixed  plane  passing  through  r, 
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the  integral  becomes,  by  (97i6), 

J_  fr(r2  —  Q*)XP  _Xr2f  p(V2  — g2)sin'p 

&■  =  *]  =  #. 

0        0 

JV;  r2  — e2 

"2"  <>(»•-<?) 

198.     The  equation  (97i6)  gives,  by  means  of  the  first  form  of 

(9SI5), 

=/«i.((2n  +  l)C.^i), 

which  substituted  in  (10020)  reduces  it  to 

u 

by  adopting  the  notation 

*=f.(n£l(«-*>)  =  f^ 

o  r 

in  which  it  must  be  observed  that  when  «  is  zero  it  must  be 

retained  in  the  written  expression  to  avoid  confusion.  It  may  also 

be  remarked  that,  from  the  comparison  of  the  forms  of  (9912)  and 

(1012i),  the  most  general  form  of  N^  is  the  same  with  that  given  in  §  196 

for  Un. 

199.     If  the  given  function  is  such  that,  for  every  value  of  n' 
different  from  n 
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the  equations  (10117_2i)  give 

o  r 

(«.^P)=i#-i-^. 

The  theorems  expressed  in  the  last  two  equations  are  of  fundamental 

importance,  and  tuere  given  by  Laplace. 

200.  The  theorem  (1027),  not  being  limited  to  any  special 

direction  of  r  is  true  for  all  directions ;  and,  therefore,  the  most 

general  form  may  be  substituted  for  Qn,  which  can  be  obtained  by 

combining  all  its  special  values  in  any  linear  function.  Any  such 

general  form  would  be  the  same  with  that  of  JYjf\  and  if  it  is 

denoted  for  distinction  by  Mlpn/],  the  theorem  (1027)  assumes  the  more 
general  form  given  by  Laplace, 

in 

f  (MjplVF)  =  0. 

0     r 

201.  In  considering  the  attraction  of  a  spheroid  upon  an  external 

point,  ivhich  is  so  remote  that  r  is  greater  than  any  value  of  q  let 

u  be  the  value  of  q  for  the  surface  of  the  spheroid,  and 

0  J  P 0 

the  function  which  is  denoted  by  the  second  member  of  this  equa- 

tion being  developed  in  the  form  of  a  series  of  terms  of  Legendre's 
functions,  by  means  of  (1012i).     The  equation  (9921)  becomes,  by 
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means  of  (1025), 

and  the  potential  is 

  o  "V(2«+l)^+1     rn)' 

202.  If  the  point  is  so  remote  that  the  squares  of  the  linear 

dimensions  of  the  body  may  be  neglected  in  comparison  with  the 

square  of  the  distance  of  the  attracted  point,  it  has  been  shown  in 

§  128  that  the  attraction  is  the  same  as  if  the  body  were  condensed 

upon  its  centre  of  gravity.  In  this  case,  therefore,  if  the  origin  is 

assumed  to  be  the  centre  of  gravity,  the  potential  becomes,  as  in 

(56*), 

fl  =  =  =  i(0l  +  f). 

In  all  cases,  then,  in  which  the  origin  is  the  centre  of  gravity,  this  equa- 

tion gives  for  an  external  point  which  is  so  remote  that  r  is  greater  than  q, 

U0  =  m, 

0i=O, 

r     l      g  n\(2?i-\-l)rn  +  1  ""»*/■ 

203.  A  homogeneous  ellipsoid  can  always  he  found,  of  which  the 

potential,  for  any  external  point,  developed  in  the  form  (10320),  will  be  iden- 

tical with  this  expression  in  its  tivo  first  terms.  To  demonstrate  this 

proposition,  and  develop  the  mode  of  investigating  the  ellipsoid  in  a 

given  case,  it  may  be  observed  that,  if  the  centre  of  the  ellipsoid 

coincides  with  the  centre  of  gravity  of  the  given  spheroid,  and  if 

the  mass  of  the  ellipsoid  is  the  same  with  that  of  the  spheroid,  the 

potential  of  the  ellipsoid,  for  an  external  point,  has  the  form  (10320) 

with  the  same  first  term.  The  difficulty  of  the  demonstration  and 

investigation  is  thus  reduced  to  the  consideration   of  the  second 
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term.     The  general  form  of  this  term  is,  by  (994)  and  (1006), 

R{P  =  A(cos2(pr  —  i)  -f-  sin cpr cos (pr  [B cos $r  -\-  .S'sin^) 

-f  sin 2  (fr  (  Ccos  2&r-\-C  sin  2 1\) 

=  —  ±A  -f  J[cos2^  -f  <?(cos2^  —  cos2j) 

-\-  i>  COS^COS^  -J-  .#  COS.COS     -f-  2  6T  COS^COSy 

=  -Sx(^  (cos2^  —  -1)  +  ̂ cosj cosy  ; 

in  which  last  form  the  arbitrary  constants  Cx,  Cy,  Cz,  Bx,  By,  and 

Bz  are  introduced,  for  the  sake  of  symmetry,  and  in  which  the  six 

constants  are  only  equal  to  five,  by  reason  of  the  equation 

In  the  especial  case  of  Q2,  these  constants  become,  for  the  axis of  x, 

Bx=  3cos^cos^, 

Vx    2"  COS    x  J 

and  similarly  for  the  axes  of  y  and  z. 

The  equation  (766)  of  the  homogeneous  ellipsoid,  of  which  the 

axes  are  the  given  rectangular  axes,  gives,  for  the  surface  of  this 
ellipsoid, 

1  „   cos2£ 

If,  therefore,  K  is  the  density  of  the  ellipsoid,  the  equation 

(10227)  becomes,  in  this  case, 
u 

o  J  fJ     s  »  + 3 
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and  hence,  by  (1032), 

0   v 

To  obtain  the  value  of  U2,  it  must  be  observed  that,  by  (10417), 
4tt 

/V#)=o, 

■<l> 

0    r
 

because,  from  the  symmetrical  form  of  the  ellipsoid,  the  value  of  u 

is  not  altered  by  changing  either  of  the  angles  upon  which  it 

depends  into  its  supplement,  while  the  sign  of  Brx  is  reversed. 
The  remaining  terms  of  the  integral  contained  in  (1052)  have 

the  form 

4  7T  4  7T  47T 

f   (U5C'Z)  =  f    f  («5  COS2  §  =  ff  (u5COB2cpp)  . 
0    ̂   0    ̂   0   ̂ 

But,  by  the  equations 

cos^  =  sin  (p  cos  &p , 

(10425)  becomes 

cos"  =  smcpnsin£„, 

y  >t  i> 

1      _  cos 2 (jfp    .    sin 2  cf'p  cos 2  dp    ,    sin 2  rjr^  sin 2  0p 

  cos%    i    sin2fy    ,     I  1  cos2flp         sin2gp\^^f,2„ 

=  «  -j-  bcos2(p  , 

by  putting 

cos20p    .     sin2flp  ,  /  1      ,      1  \    ,     -  /  1  1  \         0  , 

=  W  +  fl'cos2dp); 
14 
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l     |     l 

y  __  J   J_ 

h  =  -7-,  —  «. 

The  integral  (10515)  is,  therefore, 

i~  2  7T  7T 

|J  (ttBcosa9>p)=fjT5  J     (u5cos>psinyp) 0    r  0  0 

Bat 
3  f      f       cos2qrpsingrp 

2  J  fy  J  <jpp  (a  +  &cos2<jpp)2  " 

J*       cos  2  gip  sin  cpp  —  cos 3  qp 

fp  (a~f"  6cos2</p)2"         3a(a-|-  6cos2g>p)2' 

cos '  qpp  sin  g-p 2  2J^ 

r  - 
J  gy>  (a -)-  6 cos 2 qrp) 2         3a(a-[~^)7  ^a     ' 

r  i=r  i-=r    *   
J#pa       J26p2a       J  2  0   a'  +  b'  cos  20p P 

  tan[   p 
y/  (a!  2  —  6' 2)  y/  (a' 2  —  6' 2) 

=  ̂ 4tant-1(^tan^p): 
2tt 

These  values,  with  that  of  the  mass  of  the   ellipsoid,   reduce 

(1068)  and  (1052)  to 

|  /    («5cos2f/)p)  =  2nAxAyAl, 

0    r 
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If  the  axes  of  the  ellipsoid  are  not  those  of  x,y,  z,  but  oixr,y',zf, 
this  expression,  by  means  of  the  equation, 

r  r        x     i      ,      r     —  'y     .  r         z 
COS  2/=  COS  x  COS  x>  -f"  C0SyC0!V~r  C0SzC0!V> 

becomes 

U2  =  ̂ mZx[c'x'(cos^:  —  i)  +  ̂cosjcosl]; 
in  which 

C  =  ̂ (^rcos2^), 

^  =  2^(^^cosJcos^). 

This  value  becomes  identical,  therefore,  with  that  of  (1048),  if 

n"    -0  p 

B"  =  —B  . 
x         3m     x 

204.  If  the  potential  and  its  component  functions  for  the 

ellipsoid  are  denoted  by  the  letter  e  written  beneath  them,  the 

potential  of  the  spheroid  for  an  external  point,  for  ivhich  r  is  greater  than  o, 
becomes 

e  3  e 

205.  A  transformation  of  coordinates,  which  is  the  reverse  of 

that  by  which  the  equations  (10717)  were  obtained  from  the  reference 

of  the  ellipsoid  to  the  axes  of  the  spheroid,  would  bring  the  equa- 

tion (10419)  to  the  form  (10716).  From  the  forms  of  the  expression  it 

is  obvious  that  this  transformation  is  identical  with  that  by  which 

the  general  equation  of  the  second  degree  in  space  is  referred  to  the 
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axes  of  the  surface.  Hence,  if  Sx,,  Sy,,  and  Sz,,  are  the  three  roots  of 

the  equation 

( a:—  8)  ( c;;—  s)  ( c:—s)  +  2  &b;b:—  zx  \bi\  <%— #)]  =  0, 

they  are  the  squares  of  the  semiaxes  of  the  ellipsoid.  But  it  must 

be  observed  that  the  mass  of  the  ellipsoid,  being  the  same  with  that 

of  the  spheroid,  gives  the  equation 

Cf       Cf       Cf         J   3m   V 

The  condition  (10414),  however,  shows  that  the  values  of  Cx,  Gy, 

and  Cz,  in  (1048),  may  be  increased  or  decreased  by  the  same  quan- 

tity, without  changing  the  value  of  (1048).  The  values  of  C",  C'y', 

and  C"  may,  in  like  manner,  be  increased  or  decreased  by  the  same 
quantity,  which  change  will  produce  the  opposite  effect  upon  the 

roots  of  (IO83),  until,  at  length,  they  may  satisfy  the  equation  (1089). 

This  common  increase  or  decrease  of  all  the  roots  of  (1083)  corre- 

sponds to  the  performance  of  the  same  operation  upon  the  squares  of 

the  semiaxes  of  the  ellipsoid,  that  is,  to  a  change  of  the  ellipsoid, 

given  by  (1083)  into  another  ellipsoid,  which  has  the  same  foci  and 

the  required  mass.  The  change  of  mass  is,  however,  more  simply 

accomplished  by  an  increase  or  decrease  of  the  density  of  the  ellip- 

soid ;  and,  in  this  view  of  the  case,  it  is  requisite  that  the  value  of 

the  density  be  determined  by  equation  (1089). 

206.  If  the  point  is  without  the  spheroid,  but  near  its  surface, 

it  is  generally  necessary  to  combine  the  forms  of  the  potential  given 

in  (9916).     Thus,  with  the  notation 

/    =  the  integral  for  all  directions  of  u  greater  than  r, 

/=  the  integral  for  all  directions  of  u  less  than  r, 0 
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whence 

u  ij)     u  ip      u  ip 

the  value  of  the  potential  may  be  expressed  in  the  form 

S2  —  3:  (—  -I-  V rn\ 

in  which 

v   0  Y     0 

u 

J  ib  UP  Q 

Bat  it  may  be  observed  that,  by  (1092), 

4  77  « 

0     '    0 

whence,  by  putting 

\J  ihJp  U ib  J P  Jib  J  p'  " S 0     Y  0    '  r  0  0    ' 

u  u 

and  using  ZZ„  in  the  signification  of  (9912),  the  potential  assumes  the 
form 

<2=f(^-jy,„  <?.)). 
207.     A  similar  investigation  may  be  extended  to  the  ellipsoid 

of  §  204,  and  if 

SI'  is  the  value  of  LI  of  (10724) 



—  110  — 

the  value  of  the  potential  for  a  'point  which  is  near  the  surface  of  the  spheroid 
may  assume  the  form 

£2  =  n>-Znf((Vpn-Vpn)Qn). 0       «/  1p  e 

208.  If  the  form  of  the  spheroid  differs  but  little  from  an  ellipsoid 

ivhich  has  the  same  foci  tvith  the  preceding  ellipsoid,  and  if  it  has  a  constant 

density  for  all  that  portion  for  ivhich  Q  is  greater  than  r,  a  combination  of 

two  homogeneous  ellipsoids  may  be  substituted  for  the  single  ellipsoid,  both  of 

which  have  the  same  foci,  ivhile  one  coincides  very  nearly  with  the  spheroid  in 

form  and  density  throughout  the  portion  exterior  to  r  ;  and  the  other,  being 

much  smaller,  has  the  requisite  positive  or  negative  density  to  give  the  alge- 

braic sum  of  the  masses  of  the  two  ellipsoids  equal  to  that  of  the  spheroid. 

The  combination  of  the  two  ellipsoids  upon  any  external  point  is 

the  same  with  that  of  the  single  ellipsoid,  and  the  larger  of  the  two 

may  be  substituted  for  it  in  the  values  of  Fin  (1108). 

If,  in  determining  the  values  of  Ffor  the  spheroid  or  the  ellip- 

soid from  (10922),  u  is  supposed,  for  every  direction  in  which  the  solid 

is  contained  within  the  sphere,  of  which  radius  is  r,  not  to  refer  to 

the  surface  of  the  solid,  but  to  coincide  with  r,  the  value  of  V  van- 

ishes for  any  such  direction,  and  it  becomes  a  continuous  function, 

of  which  the  derivatives  are  discontinuous.  The  equation  (10122)  is 

applicable  to  such  a  function,  for  the  argument  by  which  it  was 

established  was  independent  of  this  condition.  With  this  modifica- 

tion, therefore,  the  accent  may  be  omitted  in  the  integral  sign  of 

(10927)  or  (1103),  and  the  limits  of  integration  extended  to  every 

possible  direction,  and  the  result  may  be  simplified  by  means  of 

(101«). 

In  the  present  case,  in  which  Jc  is  constant,  equation  (IO922) 

becomes 

Tr  k       /M»  +  3_r»  +  3x  jfc       r     rn  -, 
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whence 

If,  then,  it  is  assumed  that 

0p  =  u  —  r, 
z'  =u  —  r, 

e 

the  binomial  theorem  gives 

and  if  n  is  changed  into  —  (n  -j-  1) 

zi.  (w«->  _  r«-) = -.  i,  ( ffi  ~  * 1+  m)  (-  r)-p»-')g?) . n  —  2  v  y  1m\  I(n  —  2)  J'.m  v  '  9  ) 

These  values,  substituted  in  (1112),  give 

v      v      £  f   *      /    J>  +  2)         (-!)'- j>-3+m)\  -. 
'  P         J  P"  — f  4 J^r— » Vi>  +  3  —  m)     I  r(n  —  2)  A  P  p  'J 

=  (2,  +  l)/4H^-<2)+i(^-^)+?42^^-</)] 
,£  r__*   /  /'("+2)     i  (-i)wn»-3+"»)\r^    vmNi 
^_7"'L/,^r'"-1Vr(w  +  3  —  m)     '  J'(»  —  2)  /V">  P>\' 

This  value  may  be  substituted  in  (1103),  and  the  result  reduced 

by  means  of  (101^). 

209.  If  the  spheroid  is  not  very  different  from  a  sphere,  and  if  the 

difference  in  form  hetiveen  it  and  the  larger  of  the  tivo  combined  ellipsoids  is 

so  small  that,  in  consideration  of  the  large  divisors,  the  terms  of  (11120)  may 

he  neglected,  in  which  m  is  greater  than  3,  (11120)  is  reduced  to 

V9n—  Vpn  =  {2n+l)Wp, 
e 

if 
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and,  by  (11020), 

Wr=0. 

But  the  value  of  the  potential,  derived  from  (1103),  becomes  in 

this  case  by  (11128)  and  (10122), 

&  =  &  -  Zn  ((2»  +  1)  J  (  Wp  Qn)) 

=  S2T  —  ±n2nW™  =  n'  —  wr 0 

so  that,  in  this  case,  the  form  (10724)  is  applicable  to  every  external  point. 

This  conclusion,  and  the  mode  of  investigation,  includes  Poisson's 
analysis  of  the  spheroid,  which  differs  but  little  from  a  sphere  by 

which  it  was  suggested. 

210.  The  formula  (10724)  gives,  for  the  attraction  in  the  direc- 
tion of  the  radius  vector,  the  expression 

Dra  =  DJ2  +  ln  [(»  + 1)  ( Un  —  Z7„)r-<»+2>] . e  3  e 

Hence,  the  equation  is  obtained 

Dril  +  li2  =  Dtn  +li2  +  ii.[(2n  +  1)  ( Um  -  R.)  *-<"+«], *'  e  *r   e  3  e 

which,  by  (1032),  is  reduced  to 

Z>rI2  +  li2  =  Dr£2  +  1/2  +  2^  [(i?w  _  ££]),.-<•+«]  . 
or 

A[^r(i2  —  i2)]  =  27rv/r5n[(iZpP  —  ̂ ^)r-(»+2']. e  3  e 

211.  If  the  spheroid  is  homogeneous,  having  the  same   density 

with  the  ellipsoid,  the  equation  (10431)  gives 
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R  . —     -    nn+3 

e  '  »  -J-  3  e  K 

Bj  assuming,  then,  the  values 

UTZp   M.j  UrZp  =  Up: 
'  e  e 

tt",, —        ̂ n+3   *»+3Ni      f  -  -        n   *.»+3\ 
V  — „_|_3W  fp      >>         K'n—  n  +  3^1        tr       j' 
12'  =  LI  —  &  ; 

the  equation  (11228)  becomes 

^i2'  +  ii2'=_2JtA-„,f,[n'?0)*+2]. 
212.  If  the  attracted  point  is  upon  the  surface  of  the  spheroid,  the 

preceding  equation  becomes,  if  12  0  is  the  potential  at  the  surface  of 

the  spheroid, 
1 

'r  3 

213.  If  the  spheroid  differs  so  little  from  the  ellipsoid  that  the  square 

of  the  distance  between  the  surfaces  of  these  tivo  solids  may  he  neglected,  the 
notation 

y^z  —  s, e 

gives 
■>  — gP     1/p  —  1p     Up- 

214.  If,  moreover,  the  ellipsoid  differs  so  little  from  a  concentric 

sphere,  that  the  product  of  the  difference  between  the  radius  vector 

of  the  ellipsoid  and  the  radius  of  sphere,  multiplied  by  the  distance 

between  the  surfaces  of  the  ellipsoid  and  the  spheroid,  may  be  neg- 

lected, the  preceding  equation  is  reduced  to 
VP«=yP; 

15 
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and  (11317)  becomes 

AT  0 

In  this  last  form,  the  sum  of  the  terms  in  the  second  member  is 

extended  to  include  the  whole  series,  because  the  first  terms  which 

vanish  in  the  exact  formula,  may  become  sensible  in  the  approxi- 
mate form.     But, 

oo 

ifr     — "  n  <y  r      ) 0 

and,  therefore,  if  E  is  the  radius  of  the  sphere, 

215.     If,  again, 

£2Q  =  the  potential  of  the  ellipsoid  at  its  surface, 
e 

£2'0  =  the  potential  of  the  ellipsoid  at  the  surface  of  the e 

spheroid, 

O"     CV   £2    . 
^-0  —  "-o  —  ̂ 0  } 
e  e  e 

I 

the  general  equations 

CO e  0  e 

give 
n';=-ini„(^Lmr-^<,).. 

D,a 
ir 

r"'-0 

^.i^m^^'-^)- 
Since  the  second  members  of  these  equations  are  multiplied  by 
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y„  the  values  of  the  other  factors  may  be  reduced  to  those  which 

belong  to  the  sphere.  Hence,  Bp»  becomes  a  constant  quantity, 

and,  therefore, 

for  all  values  of  n  except  zero,  in  which  case, 

7?i —  -/?3--  7?[01- 

and  the  above  values  become 

e 

DrQZ  =  \itKRyw 
e 

which  give 

The  sum  of  this  equation  and  (ll^)  is,  by  (1139)  and  (11420), 

DrS20  +  ±<20  =  DJi0  +  ±nt. 

216.     If  the  ellipsoid  is  itself  the  sphere,  the  equation  (588)  gives 

e 

Drtt0  =  —  ±7tKfi, e 

which,  substituted  in  (115n),  gives 

This  is  the  equation  given  by  Laplace  for  a  spheroid  which 

differs  but  little  from  a  sphere,  and  is  the  fundamental  theorem  of 

his  investigations  upon  this  subject. 
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217.  If  the  attracted  point  is  ivithin  the  spheroid,  and  at  such  a  dis- 

tance from  the  surface  that  r  is  less  than  the  value  of  u,  the  formula  for 

the  potential  is,  by  §  195. 

12  —  jJ  (-^-  4-  U'iA 

in  which 

0     *  0 

J  ib  J  P  Q 

It  may  also  be  shown  by  the  method  of  §§  208-209,  that  this 

same  formula  is  applicable,  if  the  point  is  quite  near  the  surface,  and  if  the 

spheroid  differs  so  little  from  a  sphere  that  the  square  of  the  difference  may 

be  neglected. 

218.  The  important  discussions  in  regard  to  the  convergency 

of  the  series,  derived  from  Legendre's  functions,  are  deferred,  on 
account  of  their  great  length,  to  the  volumes  which  will  be  devoted 

to  the  application  of  the  Analytic  Mechanics. 

IV. 

ELASTICITY. 

219.  The  laws  by  which  the  elementary  forces  of  cohesion  and 

affinity  vary  with  the  mutual  distance  and  direction  of  the  particles 

and  atoms  are  undetermined ;  and,  therefore,  the  delicate  inquiries 

involved  in  the  constitution  and  crystallization  of  bodies  are  not  yet 

subject  to  the  control  of  geometry.  But  it  is  sufficiently  apparent 

that  these  forces  are  insensible  at  sensible  distances,  and  that  there  are 

peculiar  laws  of  mechanical  action  corresponding  to  the  three  states 
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of  (/asses,  liquids,  and  solids.  The  peculiarity  of  these  states  consists, 

principally,  in  the  facility  with  which  the  particles  can  be  moved 

relatively  to  each  other,  and  in  the  phenomena  which  arise  from 

such  motion,  but  especially  in  those  of  the  disruption  of  solid  bodies. 

As  long,  however,  as  the  relative  positions  of  the  particles  are  so 

little  disturbed  that  they  return  to  their  initial  state  when  the  dis- 

turbing cause  is  removed,  the  precise  law  of  molecular  action  is  not 

required  for  the  investigation  of  the  small  changes  which  the  consti- 

tution of  the  body  undergoes,  and  which  are  treated  as  phenomena 

of  elasticity. 

220.     To  analyze  the  changes  of  form  of  a  system  of  material 

points  which  constitute  a  body,  let 

u  be  the  distance  by  which  a  point,  of  which  the  coordinates 

are  x,  y,  and  z,  is  moved  from  its  initial  position, 

A  the  increment  of  a  function  for  another  point  of  the  body 

which  is  near  the  former  point, 

p  the  distance  of  the  second  point  from  the  former  point ; 

the  notation  of  (42]2)  gives 

px  =  Ax=pCOS^., 

Apx  —pxDxux  -\-pyDyiix  -\-pzDzux. 
Hence,  if 

p  ̂ p  -\-  Ap,    J 

P 

a  is  the  linear  expansion  of  the  body  in  the  direction  of  p  ;  and 

its  value  is  given  by  the  equation 

(i+.).=®r=*® 
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—  s  (pc  "*"  ApcY 

=  ̂ [(1  +  Dxiix)cospx  -\-  Dyuxcosp  -\-  BzuxcosP^  . 

J7j  ̂ ««,  ̂ e  reciprocal  of  1  -J-  e  is  laid  off  from  the  origin  upon  a  line 

drawn  parallel  to  p,  its  extremity  ivill  be  upon  the  ellipsoid,  of  which  the 

equation  is 

1  =  ̂ [(1  +  Dxux)-k-\-  Dyuxj  -\-  BzuxzJ. 

221.  The  expansions  or  contractions  which  correspond  to  the 

axes  of  this  ellipsoid  may  be  called  the  principal  expansions  and  con- 

tractions, and  one  of  these  is  a  maximum,  another  is  a  minimum,  and 
the  third  is  a  maximum  in  some  directions  and  a  minimum  in  others. 

If  the  ellipsoid  is  referred  to  its  axes,  the  expression  for  the 

expansion  is,  if  ex,  ey,  and  ez  are  the  values  of  £  for  the  axes, 

(l  +  £)2  =  ̂ [(l+^)cos?]2. 
so  that  for  these  directions  the  values  of  ux,  uy,  uz,  are  such  that 

(1  -f-  Dxiix)Dyux  -f-  Dxuy{l  -J-  Dyuy)  -\-  DxiizDyuz  =  0. 

(i  +  exy  =  (i  +  DxUxy  +  {DxUyy  +  {DxUzy. 

222.     The  notation 

P 
<P=P> 

gives 

coscp  =  ̂ "Jcos^cos^  ) ; 

sin2(p  =  1  —  eos2(p 

=  2X cos2 p.2x cos2  x  — Jj^Jcos^cos^  )| 

=  2X  (  cos^  cos  z  —  cos  z  COS  y  ) 

i'\2 
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(1  -|~e)2sin2<jp  =  —,^x(pcoSyCOsP  — ji/cos^cos^  j 

=  -2  2*  \pz  cos  J  —  py  cos  z  ) 

=  Zx[(coslDx  -f-  co^Dy  -\-  cos  pzDz)(iiz  cos  J  —  z^cos  J)J 

=  ̂ |^:c(cosa^:J(M*cosw  —  «2,cosf )  I  , 

in  which  the  derivatives  are  only  applicable  to  ux,  uy,  and  uz. 

Hence,  if  the  reciprocal  of  the  square  root  of  (1  -\-  e)  sin  cp  is  laid  off  from 
the  origin,  upon  a  line  draivn  parallel  to  p,  its  extremity  is  upon  the  surface 

of  the  fourth  degree,  of  which  the  equation  is 

1  =  Zx[Zx(xDx)(yuz  —  zuy)Y. 

223.  When  the  axes  are  those  of  the  ellipsoid  of  §  221,  and 

the  disturbance  is  such  that  for  each  axis  the  equations  (11819)  and 

( USag)  become 

£>yux  =  0, 

(1-f-  e)2sin2g>—  Sx  [cosjcos-?  {Dzuz  —  Dyiiy)\ 

=  ̂ |cos*cosJ(eJB--ey)J. 

224.  To  determine  the  rotative  effects  of  the  disturbance 

about  the  axes,  let 

P 

and 

(fg  =  the  projection  of  the  angle  (p  upon  a  plane  perpendicular 
to  the  direction  of  q. 

Hence 

<P*  =  Wx  —  V XI 
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,  p,         cos? 

1  Pv        cos* 

.       /         i         s         »'        Dri«2cos?-|-X)„?«,cos^  +  (1  -4-  D^i„)  cos 

tan((px  +  yx)=%- 
i>„        A^cosg  +  (1  +  -A,  u,J)  cos  J  4-  Dzuuqo^  ' 

225.     If  the  axis  of  x  is  perpendicular  toj»,  the  equations  are 

P  —  ip—P v  —  2  F         z 

Wx=W 

tanfo)  4-  w)  —  D»u*  +  (1  +  AQta
n^ 

226.  If  the  axes  and  conditions  are  those  of  §  223,  the  equa- 
tion (1203)  becomes 

tan  (9,  -f  ifjx)  =  i^j'%  tan^i. 

227.  The  whole  expansion  or  contraction  of  the  body  at  any 

time,  is  derived  from  the  consideration  that,  by  the  definition  of  e  in 

§  220,  any  very  minute  portion  of  the  body  which  is  originally  a 

sphere,  becomes,  in  the  disturbed  state,  an  ellipsoid  similar  to  that 

of  §221.     If,  then, 

6  =  the  expansion  of  the  body  ; 

the  sphere  of  which  the  radius  is  i,  becomes  an  ellipsoid,  of  which 

the  axes  are  i(l  -|-  ex),  i(l  -j-  ey),  i{l  -\-  t2),  and,  therefore,  its  vol- 
ume becomes 

and 

i  +  a-(i  +  4)(i  +  «,)(i+«.). 

228.  When  the  disturbance  is  so  small  that  the  squares  of  the 

expansions  may  be  neglected,  which  is  the  ordinary  case  of  elas- 
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ticity,  the  equation  (1196)  becomes 

e  =  Sx   cos2  xBxux  -\-  cos{,'cosf  {Dyuz  -j-  Dxiiv)  I 

=  Sx  (cos  px  Z>x)  Zx  (cos  pxiixy 

229.  J7?  //«?;?,  #ta  reciprocal  of  the  square  root  of  the  linear  expansion 

in  any  direction  is  laid  off  from  the  origin  upon  that  direction,  as  the  radius 

vector  of  a  surface,  the  resulting  surface  is  a  surface  of  the  second  degree,  of 

which  the  equation  is 

1  =  2x\x?Dxux  -\-yz(Dyuz  -{-  Dzuy)~], 
or  l=Zx(xDx)Zx(xux). 

230.  If  the  axes  are  those  of  the  principal  expansions  and 

contractions,  the  formula  for  expansion  becomes 

6==^  (cos2  J  fcs); 

and  the  equations  of  §  221  become 

Dxuy-{-Dyux=0, 

x  "-"x  • 

231.  If  the  principal  expansions  and  contractions  are  all  of 

the  same  name,  that  is,  if  all  are  expansions,  or  if  all  are  contrac- 

tions, the  surface  of  §  229  is  an  ellipsoid.  But,  in  other  cases,  in 

which,  neither  of  the  principal  expansions  is  zero,  the  surface  is  the 

combination  of  two  hyperboloids,  of  which  one  is  one-parted,  and 

the  other  is  bi-parted.  Both  these  hyperboloids  have  the  same 

axes  and  the  same  asymptotic  conical  surface  ;  and  the  asymptotic 

conical  surface,  corresponding  to  the  directions,  in  which  there  is 

neither  expansion  nor  contraction,  divides  the  directions  in  which 

the  solid  is  expanded  from  those  in  which  it  is  contracted. 
16 
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If  one  of  the  principal  expansions  is  zero,  the  surface  is  reduced 

to  a  cylinder ;  and  if  two  of  the  principal  expansions  are  zero,  the 

surface  is  reduced  to  two  parallel  planes. 

232.  In  the  present  case,  the  formula  of  §  227,  for  the  expan- 

sion of  the  solid,  is  reduced  to 

ifl  =  ex -|- ey -f-  ez  =  2xsx. 

233.  The  formula  (1209)  for  the  rotation  about  the  axis  of  x 
becomes, 

tan  (wx  4-  w)  ■==  tan  w  -I   -^-f— 

=  (1  +  A«*  —  Dyuy) tan '/'  —  Attytan8  ll>  +  Dyuz, 

(px  =  \{Dyuz — Djty)  -j-  l(I)yuz-\-Dzuy)cos  2y-\-  \{pz  uz — Dyiiy)  sin  2  y 

=  ITx-\-tx cos 2  (y  —  tjx)  • 

in  which 

JJX  =  \  (Dy  uz  —  Dz  uy) , 

racos2^a  =  \{Dyuz  -j-  ZU'y)> 

^  sin  2  ̂   =  -|  (Dz  uz  —  Dy  uy) . 

234.  The  maximum  rotation  about  x  corresponds,  then,  to 

W  =  qh 
and  is  yx  =  Hx-\-rxi 

and  the  minimum  rotation  corresponds  to 

is 

9*  =  Hx  —  %x  ', 

and  Ilx  is  the  mean  rotation.      When  the  maximum  and  minimum 

rotations  have  opposite  signs,  there  are  two  intermediate  rotations 
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which  vanish,  corresponding  to 

cos2(y—  «?«)=  —  — E- 

235.  There  are  similar  formulas  for  rotations  ahove  the  axes 

of  [I  and  g,  and  the  combinations  of  the  mean  rotations  give  a  great- 

est mean  rotation,  represented  by 

the  direction  of  which  is  determined  by  the  equations  represented 
by 

n     ttx 

cos  r  =~. 

x       n 

236.  If  the  axes  are  those  of  §  230,  the  equations  of  §  233 
become 

IIX  =  Dyuz  =  —  Dzuy, 

y>x  =  ITx-\-  I  (Dz  uz  —  Dy  uy)  sin  2  x\> . 

237.  When  the  disturbance  is  such  that,  for  each  of  the  prin- 

cipal axes,  there  is  the  equation 

Dyiiz=0, 

the  equations  of  the  preceding  section  become 

Hx  =  II=0, 

%  =  1  ( A«*  —  DyUy)  sin  2  y  ; 

so  that,  in  this  case,  there  is  compression  tvithout  any  mean  rotation. 

238.  When  the  disturbance  is  such  that  for  each  of  the  princi- 

pal axes 
Drux  =  0  : 
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the  equations  for  compression  and  rotation  becomes 

(px  =  nx  =  Dyuz, 

so  that,  in  this  case,  there  is  rotation  ivithout  compression. 

All  the  preceding  investigations  upon  the  internal  changes  pro- 

duced by  the  disturbance  of  the  form  of  a  body  are  taken  from 
Cauchy. 

239.  The  elastic  force  which  is  developed  by  any  small  dis- 

turbance of  the  internal  condition  of  a  body  is  proportional  to  the 

amount  of  disturbance,  and  has,  therefore,  the  same  general  form 

with  that  of  the  disturbance  itself.  But  the  special  discussion  of  the 
relative  values  of  the  coefficients  involves  the  consideration  of  the 

laws  of  equilibrium,  and  must  be  reserved  to  a  subsequent  chapter. 

V. 

MODIFYING    FORCES. 

240.  Among  the  forces  of  nature,  those  which  produce  the 

equations  of  condition  deserve  peculiar  consideration.  Being 

merely  conditional,  they  do  not  augment  or  decrease  the  power 

of  a  system,  but  merely  modify  its  direction  and  distribution.  They 

may,  therefore,  be  called  modifying  forces  ;  and  may  be  divided  into 

two  classes  of  stationary  and  moving. 

241.  Stationary  modifying  forces  are  perpendicular  to  fixed  sur- 

faces or  lines,  and  constitute  the  action  by  which  certain  material 

points  of  a  system  are  restrained  to  move  upon  those  surfaces  or 

lines.     A  force  of  this  nature,  being  perpendicular  to  the  motion  of 
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its  point   of  application,  does  not  increase    or  diminish  the   total 

power  of  the  system,  but  modifies  its  elements  of  direction. 

Thus  the  equation  of  condition, 
Z=0, 

between  the  coordinates  of  a  point,  involves  the  idea  of  a  force, 

acting  in  the  direction  iVof  a  normal  to  the  surface  represented  by 

this  equation.  When  it  is  combined  with  its  multiplier,  it  is  equiva- 

lent, by  (27i6),  (275),  and  (5431),  to  a  modifying  force,  of  which  the 
magnitude  is o 

242.     This  force  may  be  decomposed  into  three  forces,  which 

are  parallel  to  three  rectangular  axes,  either  of  which  is  represented 
by 

Xv/(nx)cosf, 

while  the  point  of  application  moves  through  the  elementary  arc 

ds,  its  advance  in  the  direction  of  the  axis  of  x  is 

ds cost. 

The  amount  of  power  added  to  the  system,  by  the  component 

force  in  the  direction  of  the  axis  of  x,  is 

X  ds  y/  ( □  L)  cos  f  cos* , 

and  there  is  a  consequent  increase  or  diminution  of  force  in  this 

direction.  But  the  mutual  perpendicularity  of  iV^and  s  is  expressed 

by  the  equation 

^(cosfcos*)  =  0. 

The  whole  augmentation  of  power  arising  from  the  three  com- 

ponents is,  therefore, 

^^^(n^-^Cco-sfcos*)  =  0, 
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which  agrees  with  the  fundamental  conception  of  a  stationary 

modifying  force,  and  illustrates  its  mode  of  action. 

243.  Moving  modifying  forces  are  perpendicular  to  moving  sur- 

faces, which  surfaces  are  themselves  portions  of  the  moving  system, 

and  the  points  of  application  are  restrained  to  move  upon  these 

surfaces.  In  this  case,  the  motion  of  each  point  of  application  may 

be  decomposed  into  two  parts,  of  which  one  part  is  perpendicular, 

and  the  other  is  parallel  to  the  moving  surfaces.  The  modifying 

force  has  the  same  relation  to  the  motion  which  is  perpendicular  to 

it,  which  has  been  already  discussed  in  reference  to  the  stationary 

surface  ;  put  by  its  relation  to  the  other  component  of  the  motion, 

it  communicates  power  to  the  point  of  application,  or  the  reverse. 

But  the  power  which  is  thus  communicated  to  the  point  is 

abstracted  from  the  surface,  and  through  it  from  the  other  por- 

tions of  the  system ;  and,  therefore,  the  whole  amount  of  power  of 

the  system  is  neither  increased  or  decreased.  Although  for  the  pur- 

poses of  theoretical  speculation,  it  is  convenient  to  regard  the  sur- 

face and  the  point  of  application  as  parts  of  one  system,  it  is  often 

the  case  in  the  useful  arts  that  this  transfer  of  power  is  of  the 

highest  practical  importance,  and  is  the  basis  of  the  theory  of  the 
turbine  wheel. 

In  a  rigid  system  of  bodies,  these  forces  constitute  the  bonds  of 
union. 
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CHAPTER   VI. 

EQUILIBRIUM   OF   TRANSLATION. 

244.  The  conditions  to  which  any  combination  of  forces  must  be  sub- 

ject, in  order  they  may  not  tend  to  produce  translation  in  the  system  of 

material  points  to  which  they  are  applied,  are  readily  investigated.  It 

follows  immediately  from  §§18  and  20,  and  with  the  notation  of 

those  sections,  that  the  algebraic  condition  that  the  system  has  no 

tendency  to  move  in  the  direction  of  p  is 

2[m1F1coaf  =  0. 
But  each  term 

m1F1cosf , 

is  the  projection  of  the  force  mxFx  upon  the  direction  of  p,  and, 

therefore,  if  the  algebraic  sum  of  the  projections  of  all  the  forces  upon  any 

direction  vanishes,  there  is  no  tendency  to  translation  in  that  direction. 

245.  It  also  follows  from  the  combination  of  translations, 

given  in  §  23,  that  if  there  is  no  tendency  to  translation  in  two  different 

directions,  ivhich  are  not  parallel,  there  is  no  tendency  to  translation  in  the 

plane  of  these  tivo  directions ;  and  if  there  is  no  tendency  to  translation  in 

three  directions,  ivhich  are  not  in  the  same  place,  there  is  no  tendency  to 

translation  in  any  direction. 

By  means  of  rectangular  axes  the  algebraic  conditions,  which 

are  necessary  and  sufficient  to  produce  equilibrium  in  respect  to 

translation,  are  combined  in  the  formula 

^x[^f1(m1F1cos})Y=0. 

This  formula  is  independent  of  the  situation  of  the  points  of  the 
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system,  except  so  far  as  the  elements  of  position  are  implicitly  con- 

tained in  the  expressions  of  the  forces  and  their  directions ;  it  would 

remain  unchanged,  therefore,  if  all  the  points  were  condensed  into 

one,  without  any  variation  of  the  magnitude  and  direction  of  the 

forces.  The  conditions  of  equilibrium  are,  then,  the  same  as  if  all 

the  forces  were  applied  at  a  single  point. 

246.  If  one  of  the  points  of  the  system  were  subject  to  the 

condition  of  being  confined  to  a  fixed  surface  or  line,  the  conditions 

of  equilibrium  of  translation  would  simply  be  reduced  to  the  condi- 

tion that  the  resultant  of  all  the  other  forces  would  be  perpendicular  to  this 

surface  or  line,  and  the  modifying  force  by  which  the  point  was  restrained 

would  be  equal  and  opposite  to  this  resultant. 

If  a  point  of  the  system  was  absolutely  fixed,  or  if  three  differ- 

ent points  were  restrained  to  move  upon  three  fixed  surfaces,  there 

would,  in  general,  be  no  possibility  of  translation,  but  the  resultant  of  all  the 

forces  applied  to  the  system  ivould  be  equal  and  opposite  to  that  of  the  modi- 

fying forces  by  which  the  points  were  confined. 

247.  The  theory  of  the  equilibrium  of  a  point  is  wholly 

included  in  that  of  its  translation.  But  since  every  system  is  a 

mere  combination  of  points,  the  complete  theory  of  equilibrium  can 

easily  be  evolved  from  that  of  translation.  This  mode,  however,  of 

arriving  at  the  conditions  of  equilibrium  is  neither  luminous  nor 
instructive. 

248.  The  conditions  of  the  equilibrium  of  translation  of  a  sys- 

tem, which  is  free  from  the  action  of  all  stationary  modifying  forces, 

may  assume  the  form,  that  each  force  is  equal  and  opposite  to  the  result- 

ant of  all  the  other  forces. 

If,  then,  there  are  only  two  forces,  they  must  be  equal  and  oppo- 

site ;  and  if  there  are  three  forces,  they  must  all  lie  in  the  same 

plane,  and  be  represented  by  the  sides  of  a  triangle  formed  by  three 

lines  which  have  the  same  directions  with  the  forces ;  so  that  each 



—  129  — 

force  must  be  proportional  to  the  sine  of  the  angle  included  between  the  other 

two  forces.  Whatever  are  the  forces,  if  we  were  to  start  from  a 

point,  and  proceed  in  the  direction  of  either  of  the  forces,  through  a 

distance  proportional  to  the  intensity  of  that  force,  and  proceed 

again,  in  the  same  way,  from  the  point  at  which  we  arrived  in  the 

direction  of  another  force  ;  and  so  on,  proceeding  successively  from 

each  new  station  in  the  direction  of  the  next  force,  through  a 

distance  proportional  to  that  force,  the  course  would  finally  termi- 

nate at  the  original  point  of  its  commencement. 

=♦= 

CHAPTER  VII. 

EQUILIBRIUM   OF   ROTATION. 

249.  The  conditions  to  which  a  system  of  forces  must  be  subject,  in 

order  that  it  mat/  not  tend  to  produce  rotation  about  a  point  or  an  axis,  are 

directly  deduced  from  §§  84  and  88,  and  are  simply,  that  the  resultant 

moment  of  all  the  forces,  with  reference  to  the  point  or  the  projection  of  this 

resultant  moment  upon  the  axis,  must  vanish. 

250.  When  there  is  an  equilibrium  of  rotation  about  a  point, 

the  resultant  of  the  forces  may  not  vanish,  in  which  case  there  is 

not  an  equilibrium  of  translation.  About  any  other  point,  there- 

fore, which  is  not  situated  in  the  line  drawn  parallel  to  the  resultant 

through  this  point,  there  is  not,  by  §  100,  an  equilibrium  of  rota- 

tion ;  although  there  is  an  equilibrium  of  rotation  about  every  point  of  that 

line.     In  order,  then,  that  there  may  be  an  equilibrium  of  rotation  about  all 
17 
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points  of  space,  or  even  about  three  points  not  in  the  same  straight  line,  there 

must  be  an  equilibrium  of  translation  as  tvell  as  of  rotation. 

251.  In  the  same  way,  it  appears,  that  if  there  is  an  equilibrium  of 

rotation  about  parallel  axes  lying  in  the  same  plane,  there  is  an  equilibrium 

of  translation  in  the  direction  perpendicular  to  the  plane  ;  and  if  there  is 

equilibrium  of  rotation  about  parallel  axes  which  are  not  in  the  same  plane, 

there  is  an  equilibrium  of  translation  in  every  direction  except  that  of  the 

parallel  axes. 

252.  If  there  is  a  fixed  point  in  a  system,  it  is  necessary  and 

sufficient  for  the  equilibrium  of  rotation  that  the  resultant  moment  for  this 

point  should  be  nothing  ;  and,  in  this  case,  the  resultant  moment  vanishes  for 

every  point  of  the  straight  line  which  is  drawn  through  the  fixed  point  par- 

allel to  the  resultant,  and  also  for  every  axis  ivhich  is  in  the  same  plane  with 

this  straight  line. 

253.  If  there  are  two  fixed  points  in  a  system,  it  is  necessary 

aud  sufficient  for  the  equilibrium  of  rotation  that  the  moment  of  the  forces 

should  vanish  for  the  line  which  joins  the  two  points. 

254.  If  all  the  forces  are  parallel  and  equal,  there  is,  by  §  99, 

combined  with  §  250,  a  line  parallel  to  the  common  direction  of  the 
forces  for  which  the  resultant  moment  vanishes.  If  the  common 

direction  of  the  forces  is  assumed  for  that  of  the  axis  of  z,  the 

moment  of  the  force  acting  upon  a  particle  dm,  with  reference  to  an 

axis  drawn  parallel  to  that  of  y  at  the  distance  a,  from  the  plane  of 

yz,  is {x  —  a)Fdm, 

and  the  whole  moment  of  the  system  is 

f  (x  —  a)F=Ff  (x  —  a). U  m  O  m 

The  condition  therefore  that  the  moment  vanishes  for  this  axis  is 

/{%  —  a)  =  0  ; 
m 
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and  the  plane  which  is  thus  drawn  at  the  distance  a  from  the 

plane  of  yz,  includes,  by  §  127,  the  centre  of  gravity.  Hence, 

the  axis,  for  which  the  resultant  moment  of  the  parallel,  and  equal  forces 

acting  upon  a  system  vanishes,  passes  through  the  centre  of  gravity  ;  and  if 

the  system  has  an  equilibrium  of  rotation,  and  if  there  is  a  fixed  point  in  it, 

the  centre  of  gravity  must  he  in  the  straight  line  which  is  drawn  through  the 

fixed  point  in  the  common  direction  of  the  forces  ;  or,  if  there  is  a  fixed  axis, 

the  centre  of  gravity  must  lie  in  the  plane  which  includes  this  axis  and  the 

direction  of  the  forces.  It  is  also  apparent  that,  if  the  centre  of  gravity  is 

advanced  beyond  the  fixed  point  or  axis  in  the  direction  of  the  forces,  the 

equilibrium  is  stable  ;  but  if  the  centre  of  gravity  is  not  so  far  advanced  as 

the  fixed  point  or  axis,  the  equilibrium  is  unstable. 

The  ordinary  case  of  gravitation  at  the  surface  of  the  earth,  in 

which  its  variation  in  intensity  and  deviation  from  parallelism  is 

insensible  for  the  small  system  of  bodies  discussed  in  the  usual 

investigations  of  mechanics,  is  the  familiar  type  of  this  species  of 
force. 

255.  In  the  motions  of  translation  and  rotation  there  is  no 

motion  of  the  parts  of  the  system  among  themselves.  There  is  no 

change,  therefore,  in  the  mutual  distance  of  the  origin  and  point  of 

application  of  each  of  the  forces  which  arise  from  the  action  of  the 

parts  of  the  system  upon  each  other.  The  origin,  regarded  as  a 

point  of  application  of  the  same  force,  acting  in  the  opposite  direc- 

tion, moves  just  as  far  in  the  direction  of  the  force  as  the  actual 

point  of  application  ;  so  that  such  a  force  acts  precisely  as  a  moving, 

modifying  force,  and  has  no  tendency  to  affect  the  equilibrium  of 

translation  or  rotation.  All  the  forces,  therefore,  between  the  different 

parts  of  the  system  may  be  neglected  in  determining  the  conditions  of  the  equi- 
librium of  translation  or  rotation. 

This  mutual  relation  of  the  origin  and  point  of  application  of 

the  force,  by  which  either  may  be  regarded,  at  pleasure,  as  being 
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the  origin  or  the  point  of  application,  by  a  simple  reversal  of  the 

direction  of  the  force  without  any  change  of  its  intensity,  is  com- 

monly expressed  by  the  proposition  that  action  and  reaction  are  equal. 

CHAPTER  VIII. 

EQUILIBRIUM  OF  EQUAL  AND  PARALLEL  FORCES. 

I. 

MAXIMA   AND    MINIMA    OF    THE    POTENTIAL. 

256.  In  orcler  to  give  precision  to  the  modes  of  expression, 

and  have  the  benefit  of  well-known  terms  and  forms  of  speech,  the 

force  considered  in  this  chapter,  is  assumed  to  be  the  typical  force 

of  gravitation  at  the  surface  of  the  earth,  acting  within  a  space  small 

enough  to  admit  of  the  neglect  of  its  variation  of  intensity  and  devicdion 

from  parcdlelism. 

The  level  surfaces  of  this  force  are  horizontal  planes,  and  the  potential 

decreases  uniformly  with  the  increase  of  height  above  the  earth's  surface. 
257.  Let  the  three  rectangular  axes  be  so  assumed  that  the 

plane  of  xz  is  horizontal,  the  axis  of  y,  the  upward  vertical,  that  of 

x,  the  northern  horizontal  line,  and  that  of  z,  the  western  horizontal 

line.     If,  then, 

g  is  the  intensity  of  the  force  of  gravity, 

G  the  distance  of  the  centre  of  gravity  from  the  origin,  and 
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I20  the  value  which  the  potential  would  assume,  if  all  the  points 

were  in  the  plane  of  xs  ; 

the  actual  value  of  the  potential  is,  by  the  property  of  the  centre  of 

gravity, 

£l  =  S20-f  y  =  S20-f  fr—G,+  G,) 

=  I20 — /    GS  =  S20  —  niGy. 
U  m 

Hence  the  potential  is  a  maximum,  when  the  height  of  the  centre  of 

gravity  is  a  minimum,  and  such  a  position  of  the  system  corresponds,  by  §  62, 

to  that  of  stable  equilibrium  ;  but  the  potential  is  a  minimum,  when  the  height 

of  the  centre  of  gravity  is  a  maximum,  and  such  a  position  corresponds  to 

that  of  unstable  equilibrium. 

258.  Since  the  direction  of  gravity  is  the  same  for  all  the 

points  of  the  system,  there  cannot  be  an  equilibrium  of  translation,  unless 

there  are  stationary  modifying  forces,  the  resultant  of  ivhich  must  be  exactly 

equal  to  the  whole  weight  of  the  system,  and  have  a  vertical,  upward  direc- 
tion. 

2-59.  The  resultant  moment  of  all  the  forces  of  gravity  van- 

ishes for  the  centre  of  gravity ;  and,  therefore,  the  resultant  moment  of 

all  the  stationary  modifying  forces  must  vanish  for  the  same  point. 

260.  If  there  is  but  one  modifying  force  in  the  system,  it  must 

be  vertically  directed  upnvarcls,  have  an  intensity  equal  to  the  ivhole  iveight  of 

the  system,  and  its  line  of  action  must  pass  through  the  centre  of  gravity. 

261.  If  there  are  but  two  stationary  modifying  forces,  they 

must  lie  in  a  common  plane,  ivhich  is  vertical,  and  includes  the  centre  of 

gravity,  their  resultant  must  have  an  upward  direction,  and  be  equal  to  the 

weight  of  the  system,  and  they  must  be  reciprocally  proportional  to  the  dis- 

tances of  their  directions  from  the  centime  of  gravity.  This  last  condition  is 
involved  in  the  necessity  that  the  resultant  moment  must  vanish 

for  the  centre  of  gravity. 
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262.  If  the  intensity  of  the  force  of  gravity  were  to  be 

increased  or  diminished,  the  conditions  of  the  position  of  equilib- 

rium would  not  be  changed,  but  intensity  of  the  modifying  forces 

would  be  proportionally  increased  or  diminished.  Even  if  the  force 

of  gravity  were  to  be  made  negative,  that  is,  if  the  direction  of  its 

action  were  to  be  reversed,  the  conditions  of  the  position  of  equilib- 

rium would  still  remain  unchanged,  provided  that  the  modifying 
forces  were  of  such  a  nature  that  the  direction  of  their  action  would 

also  be  reversed  ;  but,  in  this  case,  the  position  of  stable  equilibrium 

becomes  that  of  unstable  equilibrium  and  the  opposite.  This  rever- 

sal of  the  direction  of  gravity  is  relatively  accomplished  by  the 

rotation  of  the  whole  system  about  a  horizontal  axis. 

II. 

THE    FUNICULAR    AND    THE    CATENARY. 

263.  When  the  points  of  application  of  a  system  of  forces  are 

united  by  a  single  continuous  chord  which  is  destitute  of  mass,  the 

polygon,  which  is  formed  in  the  situation  of  equilibrium,  is  called  a 

funicular.  The  general  conditions  of  such  a  system  involve  a  mere 

repetition  of  the  principles  of  equilibrium  ;  and  the  present  discus- 

sion is  limited  to  the  case,  in  which  the  points  of  application  are 

masses  acted  upon  by  gravity. 

264.  When  there  is  but  one  fixed  point  to  the  system  which 

may,  without  any  essential  loss  of  generality,  be  assumed  to  be 

either  extremity  of  the  chord,  in  every  position  of  cquilibriumjlie  chord 
must  be  vertical. 

But  if  the  idea  of  the  incompressible  rod  is  supposed  to  be 

included  in  that  of  the  inextensible  chord,  each  portion  of  the  chord 

included  between  two  successive  masses  may  be  assumed  to  have  a 
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vertical  direction,  either  upwards  or  downwards  ;  so  that,  if 

n  is  the  number  of  masses, 

2 "  is  the  number  of  positions  of  equilibrium, 

all  of  these  positions,  except  that  one  in  which  every  portion  of  the 

cord  is  directed  downwards,  involves  an  element  of  instability,  and 

must,  therefore,  be  regarded  as  absolutely  unstable.  The  tension  of  each 

portion  of  the  chord  is,  in  every  case,  equal  to  that  of  all  the  tveight  which  it 

has  to  sustain  ;  that  is,  to  the  sum  of  all  the  subsequent  masses  ivhich  lie 

upon  the  portion  of  the  chord  not  attached  to  the  point  of  suspension. 

265.  When  there  are  two  fixed  points,  the  whole  included 

chord  must  hang  in  the  same  vertical  plane  with  these  two  points. 

The  tensions  of  the  various  portions  of  the  chord  represent  modifying 

forces ;  and  the  surfaces  at  which  these  forces  act  are  those  of 

spheres,  all  the  centres  of  which  are  movable,  except  those  of  the 

two  fixed  points.  In  the  position  of  equilibrium,  however,  all  the 

centres  become  stationary,  and  the  conditions  of  equilibrium  of  each 

mass  or  portion  of  the  chord  admit  of  independent  discussion. 

The  forces  which  act  upon  each  mass  are  gravity  and  the  ten- 

sions of  the  two  portions  of  chord  upon  each  side.  The  horizontal 

projections  of  these  two  tensions  must,  therefore,  be  equal  and  oppo- 

site in  order  to  balance  each  other ;  so  that  the  horizontal  projection  of 

the  tension  of  the  chord  is  invariable  throughout  Us  whole  length,  and  equal  to 

the  horizontal  projection  of  the  sustaining  force  of  each  of  the  fixed  points. 

The  algebraic  sum  of  the  upward  vertical  projections  of  the  tensions  at 

the  two  extremities  of  any  portion  of  the  chord  must  be  equal  to  the  ivcight  of 

all  the  intermediate  masses  in  order  to  support  them  against  the  force 

of  gravity. 

266.  These  two  conditions  are  necessary  and  sufficient  to 

produce  an  equilibrium  of  translation  in  any  portion  of  the  chord, 

and,  therefore,  of  the  whole  chord.     The  condition  of  the  equilib- 
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rium  of  rotation  of  each  portion  of  the  chord,  although  included  in 

the  preceding  conditions,  is  an  interesting  and  useful  modification  of 
them. 

With  reference  to  the  centre  of  gravity  of  the  masses  of  each 

portion  of  the  chord,  the  moment  of  the  gravity  of  the  masses  is 

zero,  and.  therefore  the  moment  of  the  tensions  applied  at  the 
extremities  must  also  vanish.  But  the  directions  of  these  tensions 

are  not  parallel,  and  therefore  their  lines  of  tension  produced  must 

meet  at  a  point,  at  which  both  the  tensions  may  be  regarded  as 

applied  without  affecting  their  tendency  to  produce  rotation.  At 

this  new  point  of  application  they  may  be  combined  into  a  result- 

ant, which  is  vertical,  because  the  horizontal  projections  of  the  ten- 

sions are  equal  and  opposite.  This  resultant  has  the  same  tendency 

to  produce  rotation  with  the  tensions  themselves,  and  therefore  it 

must  pass  through  the  point  for  which  this  tendency  vanishes, 

that  is,  through  the  centre  of  gravity  of  the  masses.  The  point  of 

meeting,  therefore,  pf  the  lines  of  extreme  tension  of  any  portion  of  a  chord 

is  in  the  same  vertical  ivilh  the  centre  of  gravity  of  the  intermediate  masses. 

267.  If  the  two  extremities  of  any  portion  of  the  chord  are 

in  the  same  horizontal  line,  the  equal  horizontal  projections  of  the 

extreme  tensions  are  exactly  opposed,  and  therefore  the  moments 

of  the  vertical  projections  of  these  tensions  must  be  equal  with 

reference  to  the  centre  of  gravity.  The  vertical  projections  of  the 

extreme  tensions  of  any  'portion  of  the  chord,  of  which  the  extremities  are 

upon  the  same  horizontal  line,  are,  then,  reciprocally  proportional  to  their 

distances  from  the  vertical  drawn  through  the  centre  of  gravity  of  the  inter- 
mediate masses. 

268.  Since  the  horizontal  projection  of  the  tension  of  the 

chord  is  the  same  throughout  its  whole  extent,  no  portion  of  the 

chord  can  become  vertical.  If  any  portion  of  the  chord  is  hori- 

zontal, the  vertical  projection  of  its  tension  vanishes,  and,  therefore, 
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the  vertical  projection  of  the  chord  at  any  other  point  is  equal  to 

the  sum  of  the  weights  of  all  the  masses  intermediate  between  this 

point  and  the  horizontal  portion.     If  then 

T  is  the  tension  of  the  chord  at  any  point, 

and  if  the  axis  of  x  is  horizontal,  and  that  of  y  vertical,  directed 

upwards,  so  that 

Tx  is  the  horizontal  projection  of  T,  and 

Ty  its  vertical  projection  ;  and  if 

s  is  the  arc  of  the  chord  at  any  point,  and 

m  the  sum  of  all  the  masses  included  between  the  point  and 

the  horizontal  portion  of  the  chord  ; 

the  following  equations  express  the  preceding  conditions : 

Tcos*  =  Ty  =  in, 

,       s  __  m tan  x  —  ypr . 

The  inclination  of  the  chord  to  the  horizon,  therefore,  increases 

as  the  distance  recedes  from  the  horizontal  portion. 

If  the  chord  has  actually  no  horizontal  portion,  the  preceding 

equations  are  still  applicable  by  assuming  for  m,  such  a  value  as 

would  be  required  to  correspond  to  the  vertical  tension  of  any  given 

portion  of  the  chord. 

269.  If,  in  proceeding  from  the  horizontal  portion  in  either 

direction,  the  chord  is  everywhere  ascending  or  descending,  its  hori- 

zontal direction  must  also  be  away  from  the  extremity  of  the  hori- 
zontal portion  to  which  it  is  attached  so  as  to  form  a  portion  of  a 

convex  polygon,  which  cannot  be  intersected  more  than  once  by 

any  vertical  line.     Such  a  position  of  the  chord  corresponds  to  that 
18 
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of  the  perfectly  stable  state,  or  to  that  of  the  most  unstable  state  ; 

and  each  state  is  always  possible. 

If,  in  proceeding  from  the  horizontal  portion,  the  direction  of 

motion  changes  from  ascent  to  descent,  or  the  reverse,  the  horizon- 
tal direction  must  be  reversed  at  the  same  time,  and  so  that  the 

subsequent  portion  of  the  chord  will  form  an  arc  of  a  polygon  which 

will  include  the  preceding  portion  within  its  concavity,  and  the  con- 
cavities of  both  portions  will  be  turned  the  same  way. 

270.  The  difference  of  equation  (137i8)  applied  to  two  differ- 
ent portions  of  the  chord  gives  the  following  equation  between  the 

intermediate  masses,  the  horizontal  tension,  and  the  directions  of 

tension  at  the  two  points, 

m'  —  m   sin  (sx'  —  sx) 

Tx  cos  %'  cos  % 

271.  If  the  masses  are  infinite  in  number,  and  arranged  in 

unbroken  continuity  so  as  to  form  the  chord  itself,  the  curve  is 

called  the  catenary.     In  this  case,  if 

k  is  the  weight  of  an  unit  of  length  of  the  chord,  the  mass 
of  an  element  is 

dm  =  7cds ;  and  if 

o  =  the  radius  of  curvature, 

the  equation  (13813),  applied  to  the  extremities  of  the   element, 

gives,  for  the  equation  of  the  catenary, 

<?  = 

T 

zzD«s  —  -f  sec2  x 

If 
T 

A  —  -i 

this  equation  becomes 

D*xs  =  q  =  J.sec2*. 
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272.     If  the  chord  is  of  uniform  thickness  and  density  throughout  its 

length,  Jc  and  A  are  constant,  and  the  integral  of  (13831)  is 

s  =  A  tan XI 

to  which  no  constant  is  added,  because  the  arc  is  supposed  to  be 

measured  from  the  point  at  which  it  is  horizontal. 

273.     The  curve  of  the  uniform  chord  is  easily  referred  to  rec- 
tangular coordinates,  for  the  equations 

Dsjj  —  D.^ssin  sx  =  Asm  sx  sec2*, 

D*xx  =  Dxscosx  —  .Asec  * ; 

give,  by  integration,  and  determining  the  constants,  so  that  the  ori- 
gin may  be  at  the  point  of  horizontality, 

y  =  A(secsx  —  l), 

a;  =  ̂ logtan-|-(i7r—  •) . 

These  equations  give,  by  elimination  and  the  use  of  the  nota- 
tion of  potential  functions, 

Sin^  =  tanxs=:^, 

5  =  00^-1  =  ̂   +  1)- 1, 

274.     The  vertical  tension  of  the  uniform  chord  is 

Ty  =  sk  =  ±Tx=  Txtmx=  TxSm^; 

and  the  whole  tension  is 

T=  TxsecZ=  TxCos^  =  TX(L  +  l)  =  Tx)J±. 
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275.  If  the  chord  were  required  to  he  of  such  a  variable  thickness  as 

to  assume  a  given  form  of  curve,  the  law  of  this  variable  thickness  is 

given  by  the  equation 
T 

'*•  —   2!  • 

pcos2^. 
The  vertical  tension  is 

■L  v  ==  SK  ==    il  ) 

and  the  whole  tension  is 

T=Txsecx. 

276.  If  the  thickness  of  the  chord  ivere  required  to  he  proportional  to 
its  tension,  so  that 

T 

the  following  equations  are  successively  obtained  by  easy  transfor- 
mations 

Bfs  =  B  sec  x, 

D°xz  =  B,    z  =  B(Q, 

Sin  -^  =  tan  *  =  tan  ̂ , 

|  =  log  sec  J  =  log  Cos  ̂ , 

q  =  Bsec  -„  =  BCos-jj=  cy, 

T=  Txsecx=Txsec^  =  TxCos^  =  Txc\ 

277.  If  the  thickness  he  such  as  to  give  an  uniform  horizontal  distri- 

bution of  the  weight,  that  is,  such  a  distribution  that  the  weight  of  each 

portion  of  the  chord  is  proportional  to  its  horizontal  projection,  the 

equations  are 



—  141  — 

D*s  =  q  =  Cscc3x, 

x  =  Ctan  *, 

y  =  1 67(sec2^  —  1)  =  \  Cton\  =  ̂  ; 

and  the  curve  is  a  parabola,  of  which  the  transverse  axis  is  vertical. 

278.  If  the  chord  were  compressible  and  extensible,  it  would 

be  compelled  to  assume  that  thickness,  in  which  it  would  have  the 

requisite  tension ;  and  the  form  of  the  curve  would,  with  this  condi- 
tion, be  the  same  as  if  it  were  incompressible  and  inextensible. 

Thus,  if  F  denotes  the  function  which  expresses  the  given  law  of 

the  relation  of  the  thickness  to  the  tension,  so  that 

the  form  of  the  curve  is  given  by  the  equations 

l 

DiS  ==  q  = 

*>&  = 

D°x  = 

cos2  £F {sec2  J) ' 

sin' 

cos2^(sec2£)' 
1 

cos^i^sec2^) 

279.  If  the  chord  or  any  portion  of  it  is  confined  to  a  given 

surface,  the  resultant  of  gravity  and  the  tension  of  the  chord  on 

each  point  must  be  normal  to  the  surface,  and  is  balanced  by  the 

modifying  force  by  which  the  point  is  fixed  to  the  surface. 

If,  then,  the  tangent  plane  to  the  surface  is,  at  each  point, 

assumed  as  the  plane  of  x ' y' ;  if  the  axis  of  x'  is  horizontal,  and  that 
of  y  directed  upwards,  and  if 

(/  is  the  radius  of  curvature,  at  this  point,  of  the  projection  of 

■  the  chord  upon  this  plane  ; 

the  curve  and  tension  may  be  determined  by  means  of  the  equa- 
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T  T„, 

s  ■ 

k&msy 

rCOS^/ 

&cos2£.cos^. > 

T . 

r  =  QsecP, 

&sin*, 

COS*, COS* 

J 

DST: 

=  #COS 

2,/COS^/  = 
=  #COS*  = 

JcDsy, 

T-. 

J  y 

280.  The  pressure  upon  the  surface  is  determined  by  the  con- 
sideration that  it  must  exactly  balance  the  tendency  of  each  point 

of  the  chord  to  move  in  the  direction  of  the  normal  to  the  surface. 

But  the  tendency  of  the  tension  to  move  any  point  of  the  chord  in 

any  direction,  as  that  of  p,  is 

DsTp  =  I)s(Tcos;) 

=  cos; DST—  Tsm; Ds  sp . 

In  the  case  of  the  direction  N  of  the  normal  to  the  surface,  this 

expression  becomes,  because  s  is  perpendicular  to  N, 

T 

Us  J-  N  z=  J-  Us  N  =  -j, 

Tcos  ? 

N  . 

in  which 

q"  is  the  radius  of  curvature  of  the  projection  of  the  chord 
upon  the  common  plane  of  the  normal  to  the  surface,  and 

the  tangent  the  chord. 

Hence  the  pressure  sustained  by  the  surface  in  the  direction  of 
the  normal  is 

Q 
 ' 

281.     If  the  chord  is  destitute  of  weight  upon  any  portion  of  the  sur- 



—  143  — 

face,  q'  becomes  infinite,  and  the  carve  is  that  of  the  shortest  line  which  can 
be  drawn  upon  the  surface. 

The  tension,  in  this  case,  is  constant,  and  the  pressure  upon  the 
surface  becomes 

T 

R  =  -. Q 

282.  In  the  case  of  a  cylinder,  of  which  the  axis  is  vertical,  the 

equations  become 

y      u? T 

T 

so  that  the  curve  is  the  same  ivhen  it  is  developed  ivith  the  cylinder  into  a 

plane,  which  it  assumes  ivhen  it  hangs  freely. 

283.  In  the  case  of  a  surface  of  revolution  about  a  vertical  axis  and 

a  chord  of  uniform  thichiess,  the  equations  become 
T=lc{y +!/»), 

rj     y  +  y<>  . 
sin  „,  cos 

y  > in  which  the  angle  which  y  makes  with  y'  is  determined  by  the 
meridian  curve  of  the  given  surface,  the  plane  of  xz  passes  through 

the  lowest  point  of  the  curve,  and  y0  is  the  length  of  the  chord 

which  is  equal  in  weight  to  the  tension  at  the  lowest  point. 

284.     A  special  solution  of  the  preceding  problem  is  given  by 

the  equations 

y=0,     \,  =  \n, 

o  = cos 

The  curve  is  the  circumference  of  the  circle  formed  by  the  intersection 

of  a  horizontal  plane  tvith  the  surface  of  revolution.     The  tension  of  the 
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chord  is  the  iv eight  of  a  length  of  the  same  chord  which  is  equal  to  the  dis- 
tance of  the  plane  of  the  curve  from  the  vertex  of  the  cone  drawn,  through  the 

curve,  tangent  to  the  surface. 
285.  If 

tp  is  the  angle  which  the  projection  of  y'  upon  the  plane  of 
xz  makes  with  the  axis  of  x,  and  if 

dui'  is  the  elementary  angle  which  two  successive  positions 
of  y'  make  with  each  other, 

this  elementary  angle  and  the  radius  of  curvature  are  given  by  the 

equations 

dy'=  $ml,dy, 

1  =  —  Dt\,  +  Dtf  =  smpAy  —  D* 

=  sin*,  Dsy  —  cosy,Dyfy,  =  sin*,  Dsy  —  Z^sin*,. 

If,  moreover, 

u'  is  the  length  of  the  tangent  drawn  to  the  meridian 
curve  at  any  point  of  the  chord,  and 

u  the  projection  of  u'  upon  the  axis  ofy, 

the  following  equations  are  obtained, 

sin  sy,  =  u' .  sin  yy,  Ds  xjj  -=  u'  Ds  \p' , 

_  an,,  _  D^m^  _  sin5/COS|^_  _  2y0gsin*,)  ; 

which  substituted  in  (14319)  gives,  by  dividing  by  sin  sy,  cos vyf,  and 
transposing, 

286.  In  the  case  of  the  right  cone,  ivith  the  circular  base,  the  sum  of 
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y'  and  u'  is  constant ;  if,  then, 
a  =  u  +  y, 

a  =  u  -\-y  =  a'cos^, ; 

the  curve  is  determined  by  the  equation 

Z> ,  lo^  sin',  =   -i- : — >  =  —  -4-  -7   t   > 

=  —  i^log.sm.^. 

The  integral  of  this  equation  is 

snu,  = 

a'Vo 

u 
'  («'  —  a'  -  fa\)  "     («'  +  tf)a  -  («'  +  ̂  -  2  O2 

(«'  +  yC)2-(a'-^) 
'\2J 

in  which  the  constant  is  determined,  so  that  «'  may  be  equal  to  d 
when  the  chord  is  perpendicular  to  u . 

The  chord  is  also  perpendicular  to  u',  when 

and  also  when 

u  =  h  («'  +  *»  ±  i  V  [(«  +  I/oY  +  4 «>o]  • 

When  w'  is  contained  between  a'  and  ̂ ?  the  expression  for  the 

sine  of  the  angle  which  the  chord  makes  with  u'  is  less  than  unity, 
so  that  the  angle  is  real.  This  angle  is  also  real  when  ii  surpasses 

the  greater  of  the  roots  of  (1452i),  or  when  it  is  algebraically  inferior 

to  the  smaller  of  those  roots ;  but  the  angle  is  not  real  when  ii  is 

included  between  these  roots,  but  is  exterior  to  the  preceding  limits 

ii  and  y'0.  The  curve  of  the  catenary  upon  the  vertical  right  cone  consists, 
therefore,  of  three  distinct  portions,  of  ivhich  one  is  finite,  and  included 

between  two  intermediate  points,  at  ivhich  the  curve  is  perpendicular  to  the  side 
19 
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of  the  cone  ;  ivliile  the  other  huo  portions,  commencing  respectively  at  the  tivo 

points,  which  are  the  highest  and  lowest  of  those  at  which  the  curve  is  perpen- 

dicular to  the  side  of  the  cone,  extend  to  an  infinite  distance.  These  portions 

have  tivo  of  the  sides  of  the  cone  for  their  asymptotes,  because  the  angle 

which  s  makes  with  u'  vanishes,  when  itf  is  infinite. 
287.     The  finite  portion  of  the  catenary  upon  the  vertical  right  cone 

may  be  investigated  by  adopting  the  notation 

siny  =      V"     , — ■, 
sin22=  cos  2/3, 

  sin  i     _  a'  —  rf0 n  —         i  —    7  i     7 1 cosp        a  +3fo 

sin$  =  sun  sin  <p ; 

and  that  of  elliptic  integrals,  of  which  the  third  form  may  be  repre- 
sented by 

sec# 

a  1  -f-  n  sin  *  (f 

0  v 

These  equations  give 

u'=  k  (a'  -\-y'0)(l  —  sin i sec /? sing)) 

=  %(a'  +  y'0)(l  —  sec(i$m6), 
cos2^  —  sin2i  sin2/3 

sm 
"'         cos2|3  — sin20         cos2#  —  sin2^' 

cos  0  \J  (cos 2  (9  —  2  sin 2  (3)  _     sin  i  cos  #  cos  qp 

COS„,  =  ■         cos'fl  — sin3|J  ~  cos2<9  — sin2^' 

s  sin2  (3 tan ,  /  —  -: — -. —   , sin  1  cos  a  cos  <p 

Z>,  m'  =  —  ̂  {a!  -{-  ̂0)  sin  «'sec  0  cos  y , 

n  s—    _  ̂W  _  i Q'  +  ?A')Q
s2fl  —  sin'fl 0  cos*/-  cos ^ cos  0 

=  \  (a'  4"  #0 )  ( sec  /?  cos  A  —  tan  /J  sin  ft  sec  6), 
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s  =  I  ((i-\-!/o)  (sec/?  %  —  tan/? sin/? 9?4g>)  ; 
tan;%Z)(i,?/  tan  (S  sin  (3  tan  (3  sin  (3 

M 
(1  — secp'sin^cosfl         (1  — n sine/)  cos 0 

tan/3  sin  |S  sec  0    ,    sin*  tan2/?  sin  gp  sec  0 lanpsinpsucv     ,     suit 

1  —  n  -  sin 2  9     "^         1 

•  ?« 2  sin  2  <jp 

f  =  tan/?  sin/?  0, (-  rc2,9)  +  tan'"1^  ; 

for  it  is  found,  by  differentiation,  that 

V  tang)  ?  cos<9 

_  sin i sin  rp  (cos 20  —  sin 2 i cos 2 qp) 
(cos  2d  -\-  sin 2  i  cos  2cp)  cos  0 

sin  i  tan  2f>  sin  q>  sec  d 
1  —  ?«2sin2cp 

288.  The  preceding  value  of  the  angle  \\>'  admits  of  geometri- 
cal expression  by  means  of  the  arc  of  the  spherical  ellipse  in  the 

form  given  by  Booth. 

A  spherical  ellipse  is  the  intersection  of  a  cone  of  the  second  degree  ivith 

a  sphere  of  which  the  centre  is  the  vertex  of  the  cone.     Let 

a  and  /?  be  the  two  principal  semiangles  of  the  cone,  of  which 

a  is  the  greater,  and 

10  the  angular  distance  of  any  point  of  the  arc  of  the  ellipse 
from  its  centre ; 

and  its  equation  is  obviously 

4.2  1  cos2a     i     sin2£ C0t2W  =  — —  =   -^  -\   j£. 
tan^w         tan^a    '    tan^p 

Adopt  the  notation 

o  =  the  arc  of  the  spherical  ellipse, 
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i  =  the  angle  which  the  perpendicular  to  either  of  the  cir- 

cular sections  of  the  cone  makes  with  the  axis,  which 

perpendicular  is  called  the  cyclic  axis, 

e  =  the  angle  which  the  focal  of  the  cone  makes  with  the  axis, 

rj  =  the  angle  of  eccentricity  of  the  elliptic  base  of  the  cone. 

If,  then,  through  the  centre  0  (fig.  2)  of  the  spherical  ellipse, 

the  axes  A  OA  and  B  OB'  are  drawn,  and  B  joined  to  the  foci  F 

and  F',  the  sides  and  angle  of  the  spherical  triangle  B  OF,  are 

BF=a,     B0  =  (1,     OF=t, 

OBF=i],    BFO  =  \n  —  i, 

which  are  connected  by  the  equations 

cos  a  =  cos  (i  cose  =  cot  rj  tan/, 

sin  ft  =  sin  a  cos  i  =  cot  rj  cot  e , 

sine  =  sin  a  sin  rj  =  tam'tan/?, 
costj  =  cos  icose  =  cot  a  tan/?, 

sin  i=8in  rj  cos  (i  =  cot  a  tan  e . 

Let  C  and  C  be  the  points  at  which  the  cyclic  axes  cut  the 

surface  of  the  sphere.  Draw  OF  to  any  point  of  the  ellipse,  OF 

perpendicular  to  OF,  CH perpendicular  to  CF,  OH  perpendicular 

to  CH,  F'K  perpendicular  to  OH;  take  F'K  equal  to  OC,  and 
draw  LM perpendicular  to  OA.     If,  then, 

6  =  LM,    9  =  LF'M, 

l  =  HOC,    l'=OCF, 

the  following  equations  are  readily  obtained, 

cos/=  cos  0C=  coU'tan£, 

tan£  =  cos  a' tan  I'  =  cos2  /tan  I 
=  cos 2  i  cose  tan  (p  =  cos  i  cos  rj  tan  <p  , 
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sin  6  =  sin  i  sin  cp , 

sec2u  __  ]_  _j_  cos2/cos2jj  tan2<p  =  sec2(p(cos2y  -J-  cos22COS2^sin2<p) 

=  sec2c/>(l  —  sin2j;sin2g)  -f-  sin2^sin20) 

=  sec29)(cos2d  —  sin2?]  cos2  i  sin  2y), 

9  9  9,, /i     i  2  -.       9     \  1  -I- cos2i'tan2qp cos2w  =  cos-«cos2"(l  +  cos  Man ''cp)  =  - — = — ^- — ^ — r^—r-  > 

2        _  cos2«(l  -(-  cos2^tan2qp)  _         cos2«cos20 

1  -(-  cos 2  //  tan 2  cp  1  —  sin 2  //  sin  2  qp ' 

.    o  sin2«cos2cpsec2^ 
snr&i  = 

1  —  sin 2  ?/  sin  2  qo  ' 
r 

_  cos  ?/  cos  »  cos 2  £  _  cos  //  cos  t  sin  2  « 

cos2qp  sin2w(l — sin2'// sin  2</) 

^        _  cos 2« sin2 //sin2 (5 sin  qr  cosqo 
0  (1  —  sin 2 // sin 2 <jp)  2sincocos(u' 

y,       2   sin 2  (3  cos 2  //  sin 2  //  sin 2 1  sin 2  9  cos 2 " 
^  cos20(l — sin2//sin2qp)2 

?a  cos-qp(l —  sin  //sin-qc) 

<S> 

sin2(3cos2//  /cos25sin2//sin2qpcos20  -|-  sin2?/sin25> 

cos2 5(1  —  sin 2 // sin qr) 2  \  cos2qpsec2£ 

sin2|3cos2//  /cos2  6  —  sin2//cos2'<sin2gA 

cos20(l — sin 2 //sin2 93) 2  \  cos2qpsec2£  / 

sin2|3cos2?/ 

cos20(l  — sin2j/sin2qp)2' 

r.  sin  B  cos  i]  sec  6 

V  1  —  sin  'tj  sin  qo 

a  =  sin/9cosi7<3si( — sin2^,  y)  =  ta"^sin'  ffi.( — sin2»j,  9). 

289.     In  the  particular  case  in  which 

in, this  equation  is,  by  (14817),  reduced  to 

a  =  tan^sin^°Jsi(—  n*,-q>), 
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which  substituted  in  (1475)  gives, 

/  i     ,       r— 11  tan  0 1  '  tan  <jp 

290.  For  the  length  of  the  arc  of  the  chord  which  extends 

from  its  lowest  to  its  highest  point,  this  equation  becomes 

2tf  =  2ai; 

and  if  the  magnitude  of  this  angle  is  commensurate  with  the  total 

developed  angle  of  the  cone,  the  chord  returns  into  itself,  after  passing 

around  the  cone  once,  tivice,  or  several  times,  dependent  upon  the  magnitude 

of  the  angle  of  the  cone. 

291.  To  investigate  the  infinite  portions  of  the  chord,  let 

Iq  and  l[  be  the  roots  of  the  equation  (14521), 

and  the  equation  gives 

7'  f  —  '    ' h  n  —        a  l/o  • 

Adopt  also  the  notation  of  §  287  and 

(«'  —  ffo)  _  a'  +  tfo  _  («  +  K)  sec  P 

smfjp 

smi(a'-\-f0—2u')         cos  0  (a'  +  fu  —  2  v!)         l'0Jrl[  —  2v! 
suit)  =  sim  sin  9, 

and  the  following  reductions  are  obtained,  by  the  substitution  of 

cosecg/  for  sin  (3, 

u'  =  |  (/q  -j-  l[)  ( 1  —  sec  /5  cosec 9') , 

77    ,-lW    I    „M  /tan  ft  sin  ft        Bec/?cos3qp\ %/S  —  2  l«  -h ^0 j  ̂ ~^7  un'qfcaatf) 

=  |(a'4-#o)[tan/5sin/5sec0'-f-  sec/5cos£'-}-  sec/?Z^,(cos3'cot(p')] , 

s  =  1  (a'-j-^o)  (sec/5  ̂ g>'-|-  tan/5  sin/5  S^g/-}-  sec/5  cosd'cotg/), 
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sin  -  §  cos  (j  sin 2  g/  sec  6'  —  sin 2  ft  sin  g/  sec  0' 
1  —  cos2/?  sin  2g/ 

1  —  cos-jism-y  '  '  '         9  cosgi " 

cos0' 

cos  g/ ' 

i//  =  tan  /?  sin  /?  <3>,  (—  cos2  ft  tp')  —  tan  (i  sin  /if  ̂  c/  -f-  tan  [~ 1] 

292.  The  term  of  the  preceding  value  of  y>',  which  depends 
upon  elliptic  integrals  of  the  third  order,  may  be  constructed  by 

means  of  a  spherical  ellipse,  of  which  the  parameter  is  the  reciprocal 

of  that  employed  in  the  construction  of  the  similar  term  of  the  finite 

portion  of  the  chord.  The  parameter  of  the  spherical  ellipse  of 

§  287  being  sin.],  the  reciprocal  parameter  is 
sin  i  ,, - —  =  cos  i , 

sin  tj  '    ' 

and  the  length  of  the  arc  of  the  corresponding  spherical  ellipse  for 

the  amplitude  (pr  is 

a'  =  sin/J cosi^C—  cos2/*,  9')  =  tant^n/?QJ.(—  cos2/?,  9'). 
This  arc  is  reduced,  in  the  case  of 

to 

a'  =  tan  0  sin  0  %  (—  cos2  /J,  9') . 

293.  The  finite  portion  is  exactly  circular  tuhcn a'  =  /0. 

In  this  case 

2  =  0,       /$  =  £  7t  =  «  , 

and  the  equations  of  the  infinite  portion  become 

u'  = d  (1  —  y/  2 .  cosec  9') , 
s  =  asJ2  cot  9/ 

i//=v/2(i7T  — 9/)  — 2tan[-1i[(v/2  — l)tan(|7t  — }f//)]. 
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294.  As  y'0  diminishes  from  the  value  a ,  the  finite  portion 
becomes  more  and  more  eccentric,  until  when 

both  the  finite  and  the  infinite  portions  degenerate  into  straight  lines,  which 

are  the  sides  of  the  cone. 

295.  When  y'0  is  negative,  a!  and  y'^  cease  to  be  the  limits  of  the  finite 
portion,  and  become  the  limits  of  the  infinite  portion,  while  IQ  and  l[  become 

the  limits  of  the  finite  portion.  But  1'0  and  l[  are  imaginary,  if  y0  is  included 
bettveen  the  values 

/0=(-3  +  2v/2-K 

so  that  betiveen  these  limits  the  finite  portion  disappears,  and  the  chord  con- 

sists only  of  the  tivo  infinite  portions  ;  and  at  the  limits  the  finite  portion  is 
circular. 

To  investigate  the  infinite  portions  betiveen  the  limits,  in  ivhich  the  finite 

portion  disappears,  let 
r  .   .   . 

tan  i'  —  sin  i\J  —  1 , 

sin  6"  =  sin  i'  sin  y" ; 

and  the  following  equations  are  obtained  by  simple  transformations, 

sin  (i  cos/  =  y/-|, 

u/=l-(a/-]-yo)(l  —  sec /3  sec  g/')  =  -|-(a' — #o)(cos/3 —  seer/), 
cos2£'=l-}- tan  V cosy 

=  secY(l  —  sinVsm2<j>") 

=  sec*Vcos2£"; 

B      ~  —  i  (V    I    Wcos*''sec/?sinV  tan/?     \ ■*>' s  —  if  \a  -T  l/o)  \    cos  * yii cos  Qn  ^ 2 . cos  6") ' 

,/   /    ,       ,,/secB  .„  „        sec/?©       //         t.an/?^       ,A 

»  =  *-(«  +^o)(^cos^  tany  -^«*r?  — p-^ji 
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9     *  1 — cos-p i  cos- y      '    '  -  '  r  tantf 

cos  »'  cos  8  sec  0"  ,  ./        ,,         ,«v 
=   .  '.  „  „  +  cos? cos 8 seed 

1  —  i  sin  -  q>       '  ' 

-  Z^  tan<-«(cos/Jcosy*^  -  /?^tant-ii^, 

i/;'  =  —  cos/cos/3°3ii,( —  I,  y")  -J-  cos /cos/?  9^9" 

—  tan [_  1]  ( cos  8  cos  9"  -^-^ )  —  tan [_  1]  -^. \        '  7     tain/  tan0 

=  —  cos /cos/?  ̂ i,  ( —  i,  g>")  4"  cos /cos/? 3^ 9" 

_  r-11  tanV-fcos/?cosqr/'tan20"  . 
tan i'  tan0"(l  —  cos 8  cos  g/')  ' 

in  which  the  elliptic  integral  of  the  third  form  admits  of  interpreta- 

tion by  means  of  the  arc  of  the  spherical  ellipse. 

296.     When  the  negative  of  y'0  is  equal  to  a  the  equations  may 
be  greatly  simplified  and  reduced  to  the  following  forms, 

P-- 

In 

2       J 2    = 

-\n, 

cos/? = 

o, 

COS?' 

=Vi, 

Dtf'tf — 

cos  q!' 

V/(2- 

—  sin2 

<*")' 

sin  i// = 

sin  qp 

n 

V/2 

COS2  (f" 

1- 

-  2  sin2i//  = COS 2 

/, 
„  '2. u 

a"- 
a'2 

j 

cos2 

v"~
 

cos  2  a// 

w/zj'cA  25  the  polar  equation  of  the  equilateral  hyperbola.  In  this  case,  there- 
fore, the  curve  of  the  chord  upon  the  developed  cone  is  an  equilateral  hyper- 

bola ;  this  case  was  recognized  by  Bobilliee  in  an  imperfect  investi- 

gation of  the  catenary  upon  the  surface  of  the  vertical  cone  of  revo- 
lution. 

20 
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297.      When  the  surface  of  revolution  is  an  ellipsoid,  of  which  the 

equation  of  the  vertical  section  made  by  the  plane  yx  is, 
y__i_£_ 

let  a  sphere  be  constructed  upon  the  axis  of  revolution  as  a  diame- 
ter, and  let 

y  be  the  angle  from  the  vertical  point  of  the  sphere  to  a  point 

of  which  y  is  the  ordinate,  so  that 

^  =  -4  cosy,     x  =  B  sirup, 

u  =  .4  (secy  —  cosy)  =  A  sin  (p  tan  cp, 

D^y  =  —  As'm(p. 
These  equations,  substituted  in  (14429),  with  proper  regard  to 

the  different  position  of  the  origin  of  coordinates,  give 

iyogsin*,  =  —  ̂ sin^Zyogsin*,  =  —cotcp  -4-  CJ™^_M, 
•  s  _         jv        _         iy 

y>        sin  qp  (cos  cp  -\-  M)         \  sin  2  qp  -|-  iJ/ sinqp ' 

in  which  JVand  Jf  are  arbitrary  constants. 

298.     The  maximum  and  minimum  of  sin*,  are  determined  by 
the  roots  of  the  equation 

cos 2 cp  -f-  Mcosy  =  0. 

If  these  roots  are  y'  and  cp",  the  equation  gives 

cosy' cosy''  -4-^  =  0, 

J^^  —  2  (cosy  +  cosy")  =  —  4  cos  a  (y'  +  y")  cos -|  (y'  —  y") 

=  secy/ -J-  secy". 

Of  the  two  roots,  therefore,  one  is  obtuse,  while  the  other  is 
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acute  ;  if  one  is  contained  between  i  n  and  §7t,  the  other  is  impos- 

sible ;  and  when  both  are  real,  one  is  confined  between  \  it  and  f  it , 

while  the  other  is  without  these  limits.  The  corresponding  mini- 

mum and  maximum  values  of  sin*/  are 

N.N 
-,  and 

tan  qp'  sin 2  qp'  tan  qj'  sin 2  qp" ' 

Both  these,  independently  of  their  signs,  are  minimum  values, 

and  when  they  are  both  absolutely  greater  than  unity  there  is  no 

catenary ;  but  if  either  is  less  than  unity,  there  is  a  corresponding 

portion  of  the  catenary.  When  both  values  are  less  than  unity,  the 

catenary  consists  of  two  separate  portions,  because  there  is  between 

<p'  and  y"  a  value  tp'"  of  tp  which  satisfies  the  equation 

cosg/"  =  —  M, 

and  the  values  of 

/  ///        cos2m'  —  cos  2  q>         sin 2  a! COSCP     COSC/)      =    i   -.   ?-  =   -v, '  '  cos  q>  cos  9 

///  //  Sin    qp  n    '     v     rr  r 

cos(p    — cosy   =   7-V—  2smz(p  cosy, 

arc  positive. 

299.     TVic  especial  case  of 

gives 

Jf=0; 

sin£,=  -^— ; 
*  sin  2  qp 

and  each  of  the  minimum  values  of  sin*,  is 2JST; 



—  15G  — 

which,  being  less  than  unity,  may  be  expressed  by 

2iV=sin2«. 

This  equation  gives 

.    s      _  sin  2  a Sin,./     ~     t:      . 

J  SHI  2  (J) 

If,  then,  X  is  determined  by  the  condition 

0 ,         cos  2  cp 
cos  2  /.  =  — »— , cos  2  « 

simple  reductions  give 

_  \j  (cos 2  2  «  —  cos 2  2  r/i)   cos  2  a  sin  2  ?. 
UUBj/  — 

sin2qp 

sin  2  cp       ' 

tan*/  = 
tan  2  a 

sin  2^. ' 
Z>Aqp  = 

cos  2  «  sin sin  2  g; 

2* 

—  =  COS*/, 

D<f,s 

A    
~ 

r 

=  \/(s
in2 

9)+X2COs2^)sec^' 

A 

=  v/(«n« 

B2            \ 

9>  +  X*cos  f>7 

=v/h(1 +  jj )  +  2  ̂p —  ljcos2 a  cos  2  X     ; 

n  ... Zfyssin;;, 
sin2«Z),j« 

^  '  i?sin  qp  .Z?sin  qt.  sin  2  qp ' 

r.  sin  2aD-)S 
D,w—  —   -\— . A  '  B sin  qp  sin  2  qp 

In  the  case  of  the  prolate  ellipsoid,  the  notation 

.    „.  2(B0-  —  A2)cos2a 

B*-\-  A*-\-(B*  —  A*)cos2a' 

sin*}  =  sin  i  sin  X, 

gives  the  equation 

5  =  y/(Z?2cos2ce  -\-  A2sin2a)  8.  ̂. , 
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In  the  case  of  the  oblate  ellipsoid,  the  notation 

X   =  if  71  —  X, 

.    „.,  2(A2  —  B2)cos2a 

B*  +  A2-\-(A2  —  B*)cos2a' 

shid'  =  sin  i  sin  X' , 

gives  the  equation 

s  =  ̂   (A2  cos2  a  4-  £2sm2a)  %X'. 

In  the  case  of  the  sphere  the  equations  become 

B  =  A,    i  =  i'=0, 
S  =  AX; 

and  this  result  of  this  case  is  obtained  by  Bobillier.     This  case  also 

gives  the  equation 
sin  2  « 

DxV  = sin  (f>  sin  2  cp 

sin2« 
21\) 

(sin2a-|-  cos  2  «  sin 2  P.)  y'  (cos 2 «  —  cos  2  a  sin2  A) 

which  by  the  notation 

cos2;//=  tana, 

sin  d"  =  sin  i"  sin  A. , 
becomes 

T)  2secfl" *  ^         sin  «  (1  +  tan 2  »•  sin 2  A)  ' 

y  =  -4-gV,(tanV,Jl) T         sin  a         v  7     ' 

=  2  sin  a  tan 2  a  !3\„  ( —  sec 2  a  sin 2 &'",  k)  -J-  2  sin  a  9v,  X 
smi"tand'rcosl 

-f-2tan[-^ 300.     Returning  to  the  general  case  of  the  ellipsoid,  let 

sin  « 
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a  and  /?  be  the  limiting  values  of  (p  for  the  upper  portion  of  the 
curve,  and 

a'  and  $'  the  limiting  values  for  the  lower  portion ;  and  let 

q  =  i(a  +  0),     £  =  !(/?—  a), 

r!'=l(a'+F),     e'=±(p'  —  a'). 
Hence  the  following  values  of  M  and  N  are  obtained 

iV=  £sin2a  -J-  .Msincc  ==  -|sin2/3  -[-  -Sfsin/?, 

—  N=  i  sin  2  a'  -f  Jf  sin  a'  =  |  sin  2  0'  -f  Jf sin  (?, 

■nr   cose  cos  2 »/   cose' cos  2 >/ 

cos  //  cos  if        ' 

JY=  tan^(cos2ij  cos2e  —  cos2ecos2?]) 

=  |-tan^(cos2e  —  cos2i;)  =  tan?}(cos2e  —  cos2*;) 

=  |-tani;'(cos2?/ —  cos2«/)  =  tan?/ (cos2?/ —  cos2/) 

=  tan  i]  sin  a  sin  /?  =  —  tan  if  sin  a'  sin  [Y 
.    ,  '  sin  tj  sin  a  sin  @  — sin  rf  sin  a'  sin  ̂ ' 

y/        sin  <p  (cos  37  cos  <jp  —  cos  e  cos  2  ?/)         sin  <p  (cos  ?/'  cos  cp  —  cos  e'  cos  2  ?/) 

s   ^[ —  (cos  qp  —  cos  a)  (cos  qp  —  cos  /?)  (cos  (]p  —  cos  a')  (cos  <p  —  cos  ̂ ')] 
s  sin  qp(cosg)  -(-  M) 

_  vT —  (cos2 cp  —  2cos?/ cose  cosqo  ~\-  cosk  cos^)  (cos2qp  —  2cos//cos«'cosg9  -)-  cos«'cos/3')] 
sin  qp  (cos  qri  -j-  M) 

_  y/[sin2y  (cos y  -f  ilf ) 2  —  JV^2] 
sin  q&  (cos  (jd  -|-  M) 

The  numerators  of  the  first  and  last  values  of  cos*/  give,  by 
direct  comparison, 

—  2 M=  cosa  -f-  cos/5  -[-  cosa'-|-  cos/j'=  2cos?j  cose  -|-  2cos?/cose', 

whence 

cos?jcos?/cose':=  (cos2?j  —  cos2?])  cose  =  —  sin2?;  cose, 

cos  ?;  cos?/ cose  =  —  sin2?/ cose', 
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cos2»]cos2r/ —  sin2?] sin2 •»/==  cos(rj  -|-i/)cos(j/  —  rj)  =  0, 

The  comparison  of  the  values  of  N,  shows  that  the  value  of  1/ 

must  be  obtuse,  whence 

cose'  =  tan  fj  cos  £ , 

cos  £  =  —  tan  r[  cos  e' . 

301.  The  general  case  of  the  surface  of  revolution  admits  of  one 

integration,  by  denoting  by  v  the  ordinate  of  the  meridian  curve  of 

revolution,  which  gives 

-  =   —  =  —  DAogv, 

this  equation,  substituted  in  (14429),  gives,  by  integration, 

**"  — *(*  +  *)> 

in  which 

v0  is  the  ordinate  of  the  meridian  curve  at  the  origin. 

This  form  of  the  equation  is,  however,  limited  to  the  case  in 

which  the  curve  has  a  point,  in  which  its  direction  is  horizontal. 

But  every  case  is  included  in  the  form 

smS  = 

in  which  Mis  an  arbitrary  constant. 

302.  In  the  case  of  the  surf  ace  formed  by  the  revolution  of  the  equi- 

lateral hyperbola  about  its  asymptote,  which  may  be  called  the  equilateral 

asymptotic  hyperboloid,  if  the  equation  of  the  revolving  hyperbola  is 
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the  equation  (159v4)  becomes 

■     s        _M 

Silly/   jj, 

and,  therefore,  the  inclination  of  the  curve  of  this  catenary  to  the  arc  of  the 
meridian  is  constant. 

When  M  is  greater  than  b2,  the  curve  is  impossible,  but  when 

M=±b2, 

the  catenary  becomes  a  horizontal  circle,  and 

Sy,=±±7l. 

303.  It  may  be  inferred  from  the  comparison  of  the  two  pre- 

ceding sections,  that,  upon  the  circle  of  intersection  of  any  surface  of  revo- 

lution with  the  equilateral  asymptotic  hyperboloid  of  equation  (15931),  the  arc 

of  the  catenary  of  either  surface  makes  the  same  angle  with  the  meridian 

curve  of  tliat  surface.  Hence,  the  limiting  horizontal  planes  of  the  catenary 

of  equation  (15916')  are  the  intersections  of  the  surface  of  revolution  upon 

which  it  lies  with  the  equilateral  asymptotic  hyperboloid,  of  which  the  equa- 
tion is 

v(!/-\-?/o)  =  v0yv 

The  catenary  extends  over  that  portion  of  surface  which  lies  exterior  to 

the  asymptotic  hyperboloid,  and  does  not  extend  over  that  portion  of  surface 

which  is  included  within  the  hyperboloid. 

304.  To  complete  the  solution  of  the  catenary  upon  the  equilateral 

asymptotic  hyperboloid,  the  equation  (15931)  gives 

tan,,/  =  —  -Lsvv  ==  t — ; — rsj 

whence  the  following  equations  are  obtained  ; 

(j/+^o)2=^2cot^/, 
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Dyj  =  — 2(y  +  yo)sinsj; 
2  V    J 

n    h*-D„\p ^r—        2(y  +  y„)sin2*, 

But  it  is  found  by  §  285  that 

n         sec g. tan;,    (y -f- y„)  tang. 
v  62cos^,       ' 

whence 

7-i  tan  f,, 

2  sin2*,  cob  J.  ' 

of  which  the  integral is 

W  = 

tan  J. 

2  sin*. 
-|-  tan  *,log  tan  (^tt  -j-l  *, ) . 

305.  If  the  chord  is  not  strictly  confined  to  the  surface  so  as 

to  be  incapable  of  removal  from  it,  but  if  it  simply  lies  upon  the 

surface,  without  the  power  of  penetrating  it,  it  must  leave  the  sur- 

face whenever  the  pressure  becomes  negative,  that  is,  when  the 

sign  of  R,  computed  by  (14229),  is  reversed.  The  points  at  which 

the  chord  leaves  the  surface  are,  therefore,  determined  by  the 

equation 
R  =  0. 

>♦= 

21 
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CHAPTER  IX. 

ACTION   OF   MOVING   BODIES. 

CHARACTERISTIC     FUNCTION. 

306.  Related  to  the  idea  of  the  potential,  and,  in  some 

respects  including  it,  is  that  of  the  action  of  a  system  as  proposed 

by  Maupebtuis.  Every  moving  body  may  be  regarded  as  constantly 

expending  an  amount  of  action,  equivalent  to  the  power  which  its 

motion  represents,  that  is,  to  the  product  of  the  force  of  the  moving 

body  multiplied  by  the  space  through  which  the  body  moves. 

Hence,  with  the  notation  of  Chapters  II.  and  III.,  if  V  designates 

the  whole  action  expended  by  the  system,  the  action  expended  at 
each  instant  is 

d  V=  2Zl(m1v1ds1), 

and  the  total  expenditure  of  action  is 

The  function  V  is  called  by  Hamilton  the  characteristic  function 

of  the  moving  system,  and  he  has  resolved  the  problem  of  dynamics 

into  the  investigation  of  its  form  and  properties. 

307.  If  the  power,  with  which  a  system  is  moving  at  any 

instant,  is  denoted  by  T,  its  expression  becomes,  by  (420), 

The  preceding  expressions  for  the  expended  action  give,  there- fore, 
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D,  V=  S1  (m^  Dth)  =  S1(nhvla)  =  2  T, 

V=J2T. 

PRINCIPLE    OF   LIVING   FORCES,    OR   LAW    OF   POWER. 

308.  If  12  denotes  that  function  which,  in  the  case  of  the  fixed 

forces  of  nature,  is  the  potential  of  the  moving  system,  its  change 

for  any  instant  is,  by  (3434)  and  §  58, 

d£2=dT=2[(m1F1df1). 

Hence,  in  the  case  of  the  fixed  forces  of  nature,  if  II  is  an  arbi- 
trary constant, 

T=Q  +  H, 

which  is  only  the  analytical  form  of  the  proposition  of  §  58,  and  is 

called  the  principle  of  living  forces.  The  term  living  force  denotes  the 

power  of  a  system,  so  that  this  principle  may,  with  equal  propriety, 

be  called  the  latv  of  power. 

CANONICAL   FORMS    OF   THE   DIFFERENTIAL    EQUATIONS    OF   MOTION. 

309.     The  equation  (815)  may  be  written  in  the  form 

d  £2  =  21(7n1Dtv1d  Sx) 

=  Dl^1(m1v1ds1)  —  ̂ ^m^d  Dtsx) 

=  D,2i(«i»1^)  —  ̂ iOiM^i)- 

If,  then,  i;l5  ?j2,  rj3,   etc.,  are  assumed  to  be  the  independent 

elements  of  position  of  the  n  bodies  of  the  moving  system,  s1}  s2,  etc., 

may  be  regarded  as  expressed  in  terms  of  these  elements,  so  that 

v  =  Z>ts  =  ZJDJ.sDtr}). 
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With  the  notation 

Dtr)=r)', 
this  equation  is  resolved  into  the  equations  represented  by 

The  substitution  of  these  values  give,  if  T1Urj,  denotes  T  ex- 
pressed by  means  of  rj1}  rj2,  if1}  tfiy   etc., 

Zi  K  *>i  Dnsx)  =  Sx  {m1  vx  D7f  vx)  =  Dn,  TVt  n, , 

Z1(m1v1I)nv1)  =  DvTv>7],; 

whence 

I>v£2  =  (DtBy-I)v)TV)V,. 

This  expression  represents  the  elegant  forms  of  the  differential  equa- 

tions of  motion  given  by  Lagrange  ;  but  the  mode  of  investigation  is 

adopted  from  Hamilton. 

310.  In  the  special  case,  in  which  the  independent  elements 

of  position  are  the  rectangular  coordinates,  x,  y,  z,  of  the  different 

points  of  the  system,  these  equations  become 

v*  =  x'*+y'*-\-z'% 

Dx,  TXj  x,  =  mx'  ■=■  mDtx, 

DXI2  =  mDtx  =  mD*  x. 

When  the  coordinates  of  the  system  are  subject  to  conditions, 

these  equations  are  still  applicable,  provided  that  the  forces,  by 

which  the  conditions  are  maintained,  are  included  in  the  forces  of 

12,  or  more  properly  of  dfl.  The  values  of  Dx£2  and  Dv£2  can  be 

obtained  from  the  given  differential  expression  of  i2,  even  when 
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such  expression  is  incapable  of  integration  ;  for  this  form  gives 

311.  By  means  of  the  notation 

rj[,  rf2,  •  •  •  •  etc,  may  be  eliminated  from  the  value  of  T,  and 

T  may  denote  the  resulting  value,  expressed  by  means  of  iyx, 

ri2,  wa,  o)2,  . .  . .  etc. 

Since  T  is  a  homogeneous  function  of  two  dimensions  in  respect 

to  rfx,  if 2}  etc.,  it  satisfies  the  equation 

2T=Zv{ifDv,TlhV,)  =  2v{ifW)- 
whence 

2  d  T=  Zv  (to  drf  -f  ifd  w) . 

But  the  variation  of  T,  derived  by  the  usual  method,  is 

dT=2v{DnT7lj7l,d>rir\-<odrf); 

which,  subtracted  from  the  previous  value  of  2  d  T,  leaves 

dT=2v(rI'd6>  —  DvTV)Vrd>n). 

This  equation  is  equivalent  to  the  two  equations 

D0TV}0  =  rf, 
T)  t      —   D  T 

and  Lagrange's  canonical  form  assumes  the  following  expression  given  ly 
Hamilton, 

Dtw=I)v(£2—  TV}0). 

312.  But  £2  is,  in  the  case  of  the  fixed  forces  of  nature,  a 

function  of  ra,  ij2,  etc.,  without  other  variables.     If,  then,  in  this  case, 

tt     —  t         n  ■ 
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the  preceding  equations  assume  the  simple  form 

Dt(o  =  —  DVIIV>0), 

which  are  given  by  Hamilton,  in  which  £2  may  involve  the  time. 

VARIATIONS    OF    THE    CHARACTERISTIC    FUNCTION. 

313.     The  variation  of  the  characteristic  function,  taken  upon 

the  hypothesis  that  the  time  does  not  vary,  is 

dV=f2dT. 

But,  from  the  preceding  equations, 

dF^S^adij'  +  D^fdri) 

the  sum  of  which  and  of  the  equation 

dT=d£2  +  dH, is 

2d  T=  Zv(a)dii'  -\-  Dtcadii)  +  d H 

The  variation  of  the  characteristic  function  is,  therefore, 

d  V=  2n(atdi)  —  to0dih)  -f  id  II, 

in  which  w0  and  rj0  are  the  initial  values  of  w  and  rj .     If,  then,  V  is 

expressed  as  a  function  of  the  initial  and  final  coordinates,  17,  w,  rj0, 
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and  w0,  and  of  the  constant  II,  its  derivatives  are 

D„  V=  w ,     DVo  V=  —  M0, 

DHV=t. 

By  means  of  these  equations,  the  problem  is  resolved  by  Hamilton  into 

the  determination  of  the  single  function  V. 

314.  In  the  case  in  which  the  independent  elements  of  posi- 

tion are  the  rectangular  coordinates,  these  equations  become 

W  =  mx  =  mDtx  =  Dx  V, 

to0  =  iiix'q  =  mDtx0  =  —  DX(j  V. 

315.  If  the  expression  of  the  forces  involves  the  velocities 

the  final  expression  of  d  T  in  §  313  is  incomplete,  and  the  present 

mode  of  investigation  is  not  easily  and  simply  applicable  to  such 

cases,  which  is  of  less  importance,  because  these  cases  are  not,  in 

the  most  comprehensive  view  of  the  subject,  the  cases  of  nature. 

PRINCIPLE    OF    LEAST    ACTION. 

316.  When,  in  the  case  of  the  fixed  forces  of  nature,  the  ini- 

tial and  final  positions  of  the  system  are  given  as  well  as  the  initial 

power  with  which  the  system  is  moving,  the  variation  of  the  charac- 

teristic function  vanishes,  and,  therefore,  the  function  is  generally  a 

maximum  or  a  minimum.  The  action  expended  by  the  system, 

which  is  measured  by  this  function,  is  also  a  maximum  or  a  mini- 

mum ;  or,  in  other  words,  the  course  by  which  the  system  is  com- 

pelled to  move  from  its  initial  to  its  final  position  through  the 

action  of  the  dynamic  laws,  is  that  in  which  the  total  expenditure 

of  action  is  a  maximum  or  a  minimum.  But  it  is  obvious  that,  in 

most  cases,  and  always,  when  the  paths  in  which  the  various  bodies 
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move  are  quite  short,  the  described  course  cannot  correspond  to  the 

maximum  of  expended  action ;  and,  therefore,  in  most  cases  the  sys- 

tem moves  from  its  given  initial  to  its  given  final  position  with  the  least  possi- 

ble expenditure  of  action. 

Many  examples  can,  however,  be  given,  in  which  the  expended 

action  is,  in  some  of  its  elements,  a  maximum ;  although,  even  in 

these  cases,  the  expenditure  is  a  minimum  at  each  instant,  or  for 

any  sufficiently  short  portions  of  the  paths  of  the  bodies. 

317.  This  principle  of  least  action  was  first  deduced  by  Maupee- 

tuis,  through  an  a  priori  argument  from  the  general  attributes  of 

Deity,  which  he  thought  to  demand  the  utmost  economy  in  the  use 

of  the  powers  of  nature,  and  to  permit  no  needless  expenditure  or 

any  waste  of  action.  This  grand  proposition,  which  was  announced 

by  its  illustrious  author,  with  the  seriousness  and  reverence  of  a 

true  philosopher,  is  the  more  remarkable  that,  derived  from  purely 

metaphysical  doctrines,  and  taken  in  combination  with  the  law  of 

power  which  likewise  reposes  directly  upon  a  metaphysical  basis,  it 

leads,  at  once,  to  the  usual  form  of  the  dynamical  equations. 

318.  To  deduce  the  dynamical  equations  from  the  combina- 

tion of  the  principles  of  least  action  and  living  forces,  add  together 

the  two  variations  of  T, 

dT=dS2, 

=  2n (Dv TVj  n'  —  Dt m) d i]  -|-  Dt Zn{tad i] ) . 

If  the  sum  is  introduced  into  the  variation  of  V,  the  result, 

reduced  by  the  condition  that  at  the  limits  of  integration, 

becomes 

d  V=  Zvft  {Dv  Tn,  n,  —  D,m  -f  DvS2)drj  =  0. 
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The  factor  of  drj,  in  this  expression,  must  vanish  by  the  princi- 

ples of  the  method  of  variations,  which  gives  immediately  the  gen- 

eral expression  of  Lagrange's  canonical  forms. 

PRINCIPAL    FUNCTION    AND    OTHER    SIMILAR    FUNCTIONS. 

319.     The  function  S  determined  by  the  equation 

JS=  V—Ht=Jt{T+£2), 

is  called  by  Hamilton  the  principal  function,  and  its  variation  deduced 

from  that  of  V  is,  obviously, 

djS=dV—t$H—ffit 

=  2v(<odr)  —  w0$?j0)  —  Hdt. 

Hence,  if  S  is  regarded  as  a  function  of  rj,  rjQ,  a,  w0,  etc.,   

with  the  time  t,  its  derivatives  are 

DvS=o),    DVoS=  —  w0, 

DtS=  —  H. 

The  principal  function  may,  therefore,  be  used  in  the  same  way  ivith  the 

characteristic  function  in  the  determination  of  the  motion  of  the  system. 

320.  Many  other  functions,  as  suggested  by  Hamilton,  can  be 

substituted  for  the  principal  and  characteristic  functions.  Thus  the 
function 

gives 

=fzn(r}do>'  +  Dfind<r}—I)vTn)0dri) 
22 
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=fzv(r)da>'  +  Dv  Tv>  v,drj)  +fd£2 

=zSv{i]dbi  —  rj0d  w0)  —  td  H. 

BaW=n,    DaoW=-Vo, 

DHW=  —  t. 

321.  The  introduction  of 

Q=  W+tH=ft(2:n(fia>')  +  H), 

gives,  in  like  manner, 

322.  Other  functions  can  be  formed  by  the  combination  of  V 

and  W,  or  JS  and  Q.  The  combination  may  be  such  that  for  some 

of  the  coordinates,  the  function  shall  have  the  same  form  as  V  or  S, 

while  for  the  remaining  coordinates  it  shall  have  the  form  of  W  or 

Q,  and  the  function 

U=V'—W", 
or 

P  =  jS'—Q", 

can  be  substituted  for  V  or  S. 
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PARTIAL  DIFFERENTIAL  EQUATIONS   FOR  THE    DETERMINATION    OF    THE    CHARACTER- 

ISTIC,   PRINCIPAL,   AND    OTHER    FUNCTIONS    OF    THE    SAME    CLASS. 

323.  By  substituting  in  the  equation 

for  1],  a),  etc.,  as  well  as  for  t  and  H,  their  equivalent  expressions,  as 

partial  derivatives  of  V,  8,  W,  Q,  U,  and  P,  partial  differential  equa- 
tions are  obtained,  the  integrals  of  which  give  the  values  of  these 

functions.  To  facilitate  the  expression  of  this  substitution,  T  and  £2 

may  be  assumed  to  have  such  functional  significations  that 

£2(t,t})  =  £2. 

The  partial  differential  equations  are,  then, 

T{n,DnV)  =  n(DHV,n)  +  H, 

T{r],DTjS)  =  a  —  DtS, 

T{DU  W,to)  =  12  (-  DHW,DU  W)  +  H, 

T(DaQ,a>)  =  £2(t,DuQ)  +  l)tQ. 

324.  When  the  independent  elements  of  position  are  the  rec- 
tangular coordinates  of  the  bodies,  these  equations  become,  by  the 

notation  of  (5431), 

S-(knJ$  =  2£*(DHV,z)  +  2H, 

Zmm(z'2-\-?/,2  +  /*)  =  2f2(—I)HW,±iDx,w)  +  21I. 
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325.  Through  the  preceding  investigations,  the  forms  are 

developed  by  which  every  dynamical  problem  can  be  expressed  in 

differential  equations.  It  only  remains,  therefore,  before  applying 

these  forms  to  especial  problems,  to  consider  those  methods  of  inte- 
gration which  are  best  adapted  to  their  discussion. 

CHAPTER    X. 

INTEGRATION  OF  THE  DIFFERENTIAL  EQUATIONS  OF  MOTION. 

326.  In  discussing  the  differential  equations  of  motion,  it 

might  be  permitted  to  suppose  a  previous  knowledge  of  all  that  has 

been  written  upon  the  integral  calculus.  But  since  the  profound 

philosophical  views,  with  which  this  subject  has  been  illuminated  by 

Jacobi,  have  not  yet  passed  from  the  original  memoirs  into  the  text- 
books, a  development  of  them  is  required  by  the  plan  of  the  present 

work  to  facilitate  its  further  progress. 

I. 

DETERMINANTS    AND    FUNCTIONAL    DETERMINANTS. 

327.  If  (?z-)-i)2  different  quantities  are  given,  which  are 
represented  by 
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in  which  every  number  from  0  to  n  can  be  substituted  for  Jc  or  for 

the  number  of  accents  denoted  by  i  ;  and  if  all  possible  products  of 

(n  -J-  1)  factors  are  formed  similar  to 

±aa[d-l   a[:\ 

in  each  of  which  the  same  number  is  never  repeated,  either  for  k  or 

for  i;  and  if  these  products  are  successively  formed  by  mutually 

interchanging  two  of  the  inferior  numbers,  and  at  the  same  time 

reversing  the  sign  of  the  product ;  the  sum  of  the  products  has  been 

called  by  Gauss  the  determinant  of  the  given  quantities,  and  may  be  repre- 
sented by 

%>n  =  2  ±adxdi   a« 

Thus,  for  example, 

^0  =  -2"  +  a  =  a, 

§&!  =  IE  +  aa\  =  aa\  —  axd, 

^2  =  ̂   i  a<hai  —  ad^a'l  —  aa'2a"  -\-  a1a'2d/ 
—  axa  a2  -J-  a2a  ax  —  a2axa  . 

The  same  result  might  also  have  been  produced  by  mutually 

interchanging  the  accents  without  disturbing  the  inferior  numbers. 

328.  The  sign  of  the  determinant  would  be  reversed,  by 

reversing  the  sign  of  the  product  originally  assumed  as  the  basis  of 

the  subsequent  changes. 

329.  If,  for  the  different  values  of  Jc,  all  the  given  quantities 

are  equal,  so  that 

the  determinate  vanishes.  For,  by  interchanging  Jc  and  Jc  in  all  the 

terms,  the  sign  of  the  determinant  is  reversed  by  the  regular  process 

of  formation,  whereas  if  Jc  is  substituted  for  Jc'  and  the  reverse,  no 
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change  is  produced  on  account  of  the  equality  of  the  given  terms. 
Hence 

n  nl 

or 

330.  Whenever  all  those  values  of  the  given  elements  vanish, 

for  which  i  is  as  great  as  m,  while  h  is  less  than  m,  which  condition 

may  be  denoted  by  the  equation 

the  form  of  the  determinant  may  be  simplified.  For  it  is  evident 

from  inspection  of  the  fundamental  product, 

(««x   «irr1i))(«(r«ai)   «<">)> 
regarded  as  separated  into  two  factors,  that  every  elementary  prod- 

uct, produced  by  an  interchange  between  the  inferior  numbers,  such 

as  to  transfer  one  of  these  numbers  into  the  second  factor,  vanishes, 

and  may  be  neglected.     Hence 

<&n=.2±  aaWi   a%-v.Z  ±  a™a%ff   a« 

if 

6JL      -V_J_^(»n)      (m  +  l)  (n) uv>m,n     ̂    I  am    am  +  l        U n    • 

331.     When,  in  the  preceding  proposition,  m  is  equal  to  n,  so 
that 

ak<n     0, 
it  becomes 

.         ̂ =^_lflW; 

for,  in  this  case, 

%hn  =  ̂ ±a^  =  a^. 
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332.  When,  in  addition  to  the  preceding  equation,  the  values 

of  the  elements  vanish,  for  which  m  is  equal  to  n  —  1,  so  that 

U>n-l)   A 
«i<»i  —  1        UJ 

the  value  of  the  determinant  becomes 

333.  Whenever  the  equation  (17410)  is  true  for  all  values  of 

m,  it  may  be  written  in  the  form 

»P*>=0; 

and  the  determinant  is  reduced  to  the  single  term 

^n=aaW2   <n)- 

334.  If  a  determinant  is  formed  from  the  given  elements,  with 

the  omission  of  all  those  of  which  the  number  of  accents  is  i,  and 

those  of  which  the  inferior  number  is  k,  so  that  n  is  the  number  of 

factors  of  each  elementary  product,  this  determinant  is  the  factor  of 

af  in  the  expression  of  the  determinant  £&„.  If,  therefore,  this  par- 

tial determinaitt  is  denoted  by  okf,  the  expression  of  the  complete 
determinant  is 

The  derivative  of  this  expression  is 

whence 

335.  The  preceding  notation  gives 

Qk  =  %,^n=Z±a[4   a?>. 

Hence  the  expression  of  (Mp  can  be  deduced  from  that  of  o4 
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by  putting 
i  =  Je  =  0  j 

and  those  of  —  o/k(f),  or  of  —  Q%,  are  deduced  from  that  of  ok  by 
putting 

i  =  0 ,  or  #  =  0 . 

336.  If,  in  the  third  member  of  (17521),  «$  is  substituted  for 

ajj.l),  the  expression  of  the  determinant  is  that  which  corresponds  to 
the  case  of  §  329.     Hence, 

and,  in  the  same  way, 

337.  If  a  partial  determinant  is  formed  from  the  elements  of 

Q&jjp,  with  the  omission  of  those  in  which  the  number  of  accents  is  i', 

and  those  of  which  the  inferior  number  is  k',  this  determinant,  taken 
with  its  proper  sign,  is  the  factor  of  a(p  in  the  value  of  okff.  If, 

then,  it  is  denoted  by  Q^pf  the  value  of  Q/bj(p  is 

in  which  it  must  be  observed  that,  from  the  definition 

These  equations  give 

=  ̂ y(ai?al?>i>.BP.i>aP».)  =  2*,„  (aLW2>ap^aj. 

338.  All  the  given  elements  which  have  k  or  k'  for  their  infe- 
rior number,  are  excluded  from  the  value  of  o^-tV?  and?  therefore, 
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this  parti.il  determinant  is  not  affected  by  the  interchange  of  Jc  and 

1c ,  by  which  the  terms  of  the  complete  determinant,  comprehended 
in 

are  transformed  into  those  comprehended  in 

But  this  last  aggregate  of  terms  is  also  represented  by 

Hence  these  partial  determinants  satisfy  the  equations 

<*iy?  =  —  <*&,*2  =  —  <*&?  =  <*i?# 

The  determinant  may,  therefore,  be  written  in  the  form 

=  ̂ >»(Q^P(aiPaP  -  aJT>aS3) ). 

339.  The  solution  of  linear  algebraic  equations  is  easily 

accomplished  by  the  aid  of  determinants.  For  if  the  given 

(n  -f-  1)    equations   are 

u  =  at-\-a1tl-\-   -j-  ajn  =  Zk{aktk) , 

u'=a't  4~  «i4  +   +  a'Jn  =  ̂ k(a'Jk), 
v 

„m  =  a^t  +  flf ̂   +   +  ct{:Hn  =  Zk(a["Hk) ; 

the  sum,  obtained  by  adding  the  products  of  the  given  equations, 

multiplied  respectively  by  okk,  okk,   °^in),  is 

<3l„4  =  oAkU  _}_  ok'k%{ -f   oiknhi{n)  =  ̂ (q^V'') 

23 
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340.  If  all  the  quantities  u,  u',  u",  etc.,  vanish,  t,  t1}t2,  etc.,  must 
likewise  vanish,  unless  the  determinant  vanishes.  If,  therefore, 

either  of  the  quantities  t,  t1}  t2,  etc.,  does  not  vanish,  when  u,  u',  u", 
etc.,  vanish,  the  determinant  must  also  vanish,  whence  the  equation 

(17613)  applies  even  when 
i'  =  i, 

or  for  all  values  of  i' 

Hence,  it  is  evident  that 

t-.t^.U   \tn  =  Qk^:okf:ok>'i>   :q4,w 

341.  The  process,  by  which  the  value  of  in  was  obtained,  may 

be  regarded  as  designed  to  eliminate  the  n  quantities  t,t1,t2   

tn_1  from  the  given  equations.     By  precisely  a  similar  process,  the 

m  quantities  4  h-,  h   C— i  m&y  be  eliminated  from  the    first 

m  — |—  1  of  the  given  equations,  and  the  form  of  the  resulting  equa- 
tion must  be 

Bu  +  5V+   +  J?(->«(-)=  CJm  +  Cm+1tm+1  +   +  CJn, 

in  which 

In  the  same  wav,  if 

rn  —  2  +  ok  oA{  ok'l   o&w 

r      =  2  +  okim)  o4(m+1)   oifcw '  m,n     — "   _i_  m  «i  -+-  1         n  5 

the  quantities  ti{m  +  l),  u(m+2),   u{n)  may  be  eliminated  from  those 
of  the  equations  (17730)  which  give  the  values  of  tm,  tm  +  1,   tn, 
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and  the  form  of  the  resulting  equation  is 

En  +  E'u'  +   +  J5Wt»<->  =  FJm  +  1L+1C+i  +   +  «*> 
in  which 

But  the  two  equations,  obtained  by  these  processes,  must  be 
identical  in  the  ratios  of  their  coefficients.     Hence 

Em  —  Fm  , 
or 

™Bm- 1  rm,  n  ?k<?i  rm,  n 

Vn'  m  +  l,n  <->\Dn        'm  +  ltn 

or  by  extending  the  series  of  ratios  to  all  values  of  m, 

*«:  «,:   :  ̂-1  =  ̂ 1,.:  «SrM:   :  0L>n,„. 

But  it  is  easily  seen  that 

r^.=  ofeM  =  «._!, 
and 

whence ri>n         ok>rn'3 

^n  =  ̂ Qkrn  =  a^l-\ 

A  repetition  of  the  same  process,  in  a  different  order,  upon  the 

given  equations  gives 

Hence 
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342.  The  ratio  of  the  values  of  rn  and  i\  n  may  be  prefixed  to 

the  series  of  ratios  of  (17916)  in  the  form 

The  series  of  ratios  gives,  then, 

or 

This  investigation  is  derived  from  Jacobi. 

343.  The  variation  of  a  function  of  the  quantities  represented 

by  a{k]  is  expressed  by  the  formula 

If,  then,  the  values  of  the  quantities,  denoted  by  u{i\  are  such 
that 

and  if  the  corresponding  values  of  t,tx,   tn  are  denoted  by 

t(k),t\,   t(n\  the  expression  of  iff  assumes  the  form 

fflt^J*)  =  St  [Daf  ®»n  (da?  +  (i,  *))] , 

and  therefore 

344.  If  the  given  quantities  are  such  that 
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it  is readily  perceived  that 

c*jp= 

Qkf\ 

Qkf{i,k)  = 

—  Qi?>(*, 

.*), 

and 

—  *«*    —    ot 

1  =  (T  log. n  ? 

which  is  given  by  Jacobi. 

345.  A  system  of  equations,  similar  to  those  of  §  339,  repre- 
sented by  the  form 

gives,  in  the  same  way, 

If 

an  equation  similar  to  (18026)  is  derived, 

346.  Let   the    («-}-l)2    quantities,   represented    by   c[i] ,   be 

derived  from  the  given  elements  aki]  and  b(l]  by  the  formula 

ckV)  =  aAJr<KJr   aPW  =  2m{aWp), 

and  let  the  determinant  of  these  quantities  be 

Q^m=S±e^4   of. 

If  only  one  term  is  taken  in  each  of  the  quantities  c{p,  the 
general  term  of  £&„  is  represented  by 

±a^aY)a^')   b^b^b^P   
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A  mutual  interchange  of  the  letters  Jc,  followed  by  a  mutual 

interchange  of  the  letters  i  in  the  resulting  terms,  produces  all  the 

terms  of  Shn,  which  correspond  to  the  same  combination  (M)  of 

accents  m,  m1,  etc.  A  different  combination  of  accents  gives  a  dif- 
ferent set  of  terms  ;   and  if 

Ml 

^  =  2  ±  a^a^air^   <, 
g»w  =  2  ±b{m)b{r')^in")   Kt], 

denote  the  determinants  of  the  given  elements  corresponding  to  one 

of  these  combinations,  the  complete  determinant  is  expressed  by 

which  is  given  by  Jacobi. 
347.     In  the  case  of 

p  =  n , 

there  is  only  one  combination  (M)  of  the  accents,  so  that  in  this 
case 

&.=  fc.<3»., 

which  was  given  by  Cauchy. 

When 

P<n, there  is  no  combination  (M),  in  which  all  the  accents  are  different 

from  each  other,  and,  therefore,  it  follows  from  §  329  that,  in  this  case 

and  that,  in  all  cases,  the  combination  (31)  must  consist  of  accents 
which  differ  from  each  other. 

348.     In  the  special  case  of 

a  k    ==  V  k  ■> 
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which  gives 
„(/)  —  r{k) 

the  value  of  the  determinant  is  reduced  to 

G)„         >r      /uJJu(M)\2 =-*>»     *^M\  Mn     )   3 

which,  when 

is  reduced  to p-=n 

Qo  =<m2 

FUNCTIONAL    DETERMINANTS. 

349.  If  the  given  elements  aki]  are  the  derivatives  of  [n  -J-  1) 

functions  f,f1}   /„  of  (n  -f-  1)  variables  x,x\,   xn ,  so  that 

the  determinant  of  the  elements  is  called  the  functional  determinant  of 

the  given  functions.  Thus,  in  the  present  case,  all  the  terms  of  the 
determinant 

®°n  =  2  ±  DxfDXifxDxJ2   DXnfn} 

are  obtained  either  by  a  mutual  interchange  of  the  variables,  or  by 

a  mutual  interchange  of  the  functions,  the  interchange  being 

accompanied  in  either  case  with  a  reversal  of  the  sign,  precisely  as 

in  deducing  the  terms  of  the  ordinary  determinant.  The  proposi- 

tions, which  have  already  been  given  in  reference  to  determinants, 

are  easily  applied  to  functional  determinants. 

350.  In  the  case  in  which  all  the  functions,  above  the 

(m  -\-  l)st,  are  free  from  the  first  m  variables,  the  condition  of  (1749) 

is  satisfied,  so  that  the  notation  of  (1742a)  gives  the  equation  (17420) 
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351.  In  the  case  in  which  every  function  is  free  from  the 

variables  of  which  the  inferior  number  is  less  than  that  of  the 

function  itself,  the  equation  (17510)  is  satisfied,  and  the  functional 

determinant,  reduced  to  a  single  term,  is 

352.  If  the  given  functions  are  not  independent  of  each  other,  the 

determinant  vanishes.  For  if  the  equation,  which  denotes  their  mutual 

dependence,  is  expressed  by 77=0, 

its  derivatives,  with  regard  to  the  given  variables,  are  represented 

by  the  equation 

^(^77^/&)  =  0. 

The  equations,  included  in  this  form,  are  identical  with  the 

linear  equations  of  §  339  when  the  values  of  u  vanish  and 

tk  =  Dfhn. 

All  these  values  of  t  cannot  vanish,  because  the  equation,  which 

expresses  the  mutual  dependence  of  the  functions,  must  involve  one 

or  more  of  them ;  and,  therefore,  the  determinant  must  vanish 

by  §  340. 
353.  If  either  of  the  given  functions  (f)  contains  any  of  the  other 

functions,  these  functions  may  be  regarded  as  constant  in  finding  the 

functional  determinant.     For  each  derivative  of  f  is  the  sum  of  two 

parts,  one  of  which  is  derived  by  direct  differentiation  with  refer- 
ence to  the  variable  explicitly  contained  in  the  function,  and  the 

other  part  is  obtained  by  indirect  differentiation  through  the 

functions  involved  in  f.  The  whole  determinant  may  then  be 

regarded  as  composed  of  two  such  portions.  But  the  portion  of  the 

determinant   obtained   by  the   indirect  differentiation  off  is  the 
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same  as  if/,,  not  containing  explicitly  any  variables,  were  simply 

a  function  of  the  other  functions*  This  portion  must,  therefore, 
vanish,  and  the  remaining  portion  of  the  determinant  is  that  which 

is  obtained  by  direct  differentiation,  conducted  as  if  the  functions, 

involved  in  fi}  were  constant. 

This  proposition  is  applicable  even  where  several  of  the  given 

functions  contain  the  remaining  functions ;  but  not  when  they 

mutually  involve  each  other. 

354.  If  the  second  of  the  given  functions  contains  the  first, 

if  the  third  contains  the  first  and  second  functions,  and  if,  in  general, 

each  function  contains  all  the  previous  functions,  the  preceding 

proposition  is  applicable.  Hence  if,  by  means  of  the  first  function, 

the  first  variable  is  eliminated  from  all  the  other  functions ;  if,  by 

means  of  the  second  function  thus  reduced,  the  second  variable  is 

eliminated  from  all  the  subsequent  functions ;  and  if  this  process  is 
continued  until  each  function  is  liberated  from  all  the  variables 

designated  by  an  inferior  number,  although  it  may  involve  all  the 

preceding  functions ;  the  determinant  is  reduced  to  a  single  term  as 

in  §  351.  This  will  often  afford  a  convenient  method  of  obtaining 
the  functional  determinant. 

355.  In  performing  the  successive  eliminations,  the  operation 

must  not  be  restricted  to  any  prescribed  order  of  the  variables,  but 

one  of  the  variables,  remaining  in  f,  must  occupy  the  place  of  xL. 
Hence  there  is  not  one  of  the  factors  of  the  determinant  in  the 

form  of  §  351  which  vanishes,  unless  a  function  be  obtained  from 

which  all  the  variables  are  explicitly  eliminated,  or,  in  other  words, 

unless  one  of  the  given  functions  is  included  in  the  others  and  can 

be  derived  from  them,  so  that  they  are  not  independent  of  each 

other.     If,  therefore,  the  given  functions  are  mutually  independent,  their 
functional  determinant  does  not  vanish. 

356.  If  F,  F1}   Fn  are  given  functions  of  /,/i,   fp, 
24 
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which  are  themselves  functions  of  the  variables  x,  x1,   xn,  the 

derivatives  of  the  functions  {F{)  with  respect  to  the  variables  (^) 

are  represented  by  the  equation 

nXiFk  =  Zm{DjmFkDrifm). 

This  equation  coincides  with  (I8I24),  if  the  notation  for  af  is 
combined  with  the  notation 

cf  =  DXiFk, 

h%  =  »fmFk, 

The  remaining  notation  and  conclusions  of  §§  346  and  347 

may,  therefore,  be  applied  to  this  case.  Hence,  by  (18218)  the 

functional  determinant  of  the  independent  functions  (F{),  taken  ivith  respect 

to  the  same  number  of  variables  (x{),  which  enter  into  (Ft)  only  as  they  are 

involved  in  the  same  number  of  independent  functions  (f)  explicitly  involved 

in  (Fi),  is  obtained  by  multiplying  the  functional  determinant  of  (F{)  tahen 

ivith  respect  to  (f)  by  the  functional  determinant  of  (/,-)  taken  ivith  respect 
to  (Xi). 

If  the  number  (j)  -\-  1)  of  functions  (f)  exceeds  the  number  (n  -f-  1) 

of  functions  (Fi),  the  complete  functional  determinant  of  (F{)  is  by  (182n) 

the  sum  of  all  the  partial  determinants  of  (F{)  obtained  by  every  possible 

combination  of  (n-\-  1)  of  the  functions  (f). 

If  the  number  of  functions  (f)  is  less  than  that  of  the  functions  (F{), 

the  functional  determinant  vanishes,  as  in  (18225),  tvhich  corresponds  to  the 

proposition  that  the  number  of  independent  functions  cannot  exceed  the  num- 

ber of  variables,  by  which  they  may  be  expressed. 

357.     In  the  case,  in  which 

all  the  derivatives  of  (Ft)  with  reference  to  the  variables  (xt)  vanish, 
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except  those  included  in  the  form 

DXiFi  =  DXiXi  =  l. 

In  this  case,  therefore, 

V.  =  JE±Df*l>A*   !>,.*., 

is  the  functional  determinant  of  (a:,)  regarded  as  functions  of  (f), 

and  the  equation  (18218)  becomes 

&„  =  1  =  #„&., 

or  the  functional  determinant  of  (#,-)  taken  with  respect  to  (f)  is  the  recipro- 

cal of  the  functional  determinant  of  (/,■)  taken  ivith  respect  to  (#;). 

358.  If  in  the  linear  equations  of  §  339,  the  values  of  (t)  are 

expressed  by  the  formula 

either  of  the  equations  is  represented  by 

um  =  2k  {DXtfmDfiXk)  =  DAfm  =  0. 
unless 

m  =  i, 

in  which  case 

^  =  ̂   =  1, 

This  value  substituted  in  (1773l))  gives 

«.*/,**  =  A?  «.  =  <*if>. 

359.  If  it  is  again  assumed  that 
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the  equations  of  §  345  give 

vk  =  Zm  {aFH% )  =  Zm  {DXkfmDfJfi)  =  DxJfi 

2hW  =  ZtWfk  =  ̂  =  *  log  &.. 

360.  By  the  same  process,  it  may  be  proved  that,  if  (fi)  are 

the  variables  and  (^)  the  independent  functions, 

2»V,  =  *  lQg  ̂   =  —  *  los  ®w- 

But  it  must  be  observed,  that  in  finding  the  derivatives  of 

dxk  they  are  supposed  to  be  expressed  as  functions  of  the  original 

variables,  precisely  as  in  the  preceding  section  the  values  of  d  fh 

are  supposed  to  be  expressed  in  terms  of  fk. 

361.  The  equation  (1889)  reduced  to  the  form 

may  be  added  to  the  identical  equation 

The  sum  is,  by  (18727), 

=  2kjiDXk{^nDfiXk§fi) 

362.  In  the  case,  in  which  the  arbitrary  variation  d  is  assumed 
such  that 

except  for  the  value 
i=0, 
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the  preceding  equation  becomes 

If  this  equation  is  multiplied  by  /  and  added  to  the  equation 

the  sum  is 

363.  If  the  equations,  by  which  the  functions  (/,)  depend 

upon  the  variables  {xt),  are  represented  by 

^  =  0, 

their  derivatives  are  represented  by 

i      x     *"»i\     JmJ-k        ijmj' 

The  comparison  of  this  equation  with  (1864)  indicates  that  the 

concluding  propositions  of  §  356  may  be  applied  to  this  case,  pro- 

vided the  negative  sign  is  introduced  as  a  factor  of  all  the  deriva- 

tives taken  with  respect  to  (/£).  Hence,  if  the  number  of  the 

functions  (f{)  is  the  same  with  that  of  the  variables  (a?*) , 

2  ±  DXFBSFX   D,Jm  =  (-)n+1(&nZ  +  DfFDfiFl   \Fn, 

and 

6ft.     /   \»  +  i  2+DxFD'i  Fi   -D*nFn 

n~^      >        Z±DjFDfx  Fx   D/n  Fn  ' 

364.  If  the  number  of  the  functions  (/f)  exceeds  that  of  the 

variables  (xt)  and  is  p  -j-  1  instead  of  n  -f-  1,  let  (Fj)  be  the  form  of 

(Fj)  when  the  last  p  —  n  of  the  functions  (/,)  are  eliminated  from 

it  by  means  of  the  last  p  —  n  of  the  given  equations.     In  this  case 
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it  follows  from  the  reasoning:  of  S  354  that o 

=  -2"  +  D  FXDX  F}          Dx  f1  s  +  Df     F  ,,!>/     F  ,  „  -0/  F , 

2  ±  DfFDfxFx   JDfpFp 

But  the  equation  (18926)  is  applicable  to  this  case  if  (7^)  is 

changed  to  {F}),  and,  therefore,  the  introduction  of  a  common  factor 

into  the  terms  of  (18926)  gives,  by  means  of  the  preceding  equations, 

05    _  /      y,  +  i  2+D^D^  F1   D*HFn  Dfn+l  Fn+1 
^»— V      )  2±DfFD/lF1   D/pFp 

365.  There  are  various  interesting  and  instructive  relations 

between  the  partial  determinants  of  functions  which  have  been 

developed  by  Jacobi,  and  which  will  be  found  useful  in  discussing  the 

theory  of  differential  equations.  If  the  number  of  the  functions 

(fi)  as  well  as  of  the  variables  (xt)  is  increased  to  m  -J-  n  -J-  i,  let 

')  =  2  +  D  f-D*  A   D*      f     i  ̂      f  ... 

If,  then,  from  the  function  (fn+i),  all  the  variables  x,  xx,   

xn_1  are  eliminated,  and  the  functions  f,fi   fn-\  introduced 

in  their  places,  and  the  function  (f„+i)  thus  transformed  is  denoted 

by  (fl+i),  the  values  of  2B  become 

k  ^^K  — 1         n  +  kJ  n  +  i  • 

The    determinant    of   the    (m  -f- 1)2  functions   (Bff)    is,   con- 
sequently, 

S  +  Q&Q&'MZ   ^^=6g,m+^2-\-Dx  f1Dx      fi, ,   Dx      fi.    . ^"  J_  1       2   ^  m       <Jton  — 1  -"  J_        „J  n        n  +  lJ  »  +  l           n  +  m./  »-)-»i  • 
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But  it  is  obvious  that 

^n  +  m       ̂ rt  —  1—    X  J          n  +  mJ  n  +  m> 

whence 

^±a«$   »a,,=-«-i«.+». 

3G6.  If  *$$  denotes  the  value  which  (^°„_1  assumes  when  all 

the  derivatives  relatively  to  xt  are  changed  into  the  derivatives  rela- 

tively to  xn  +  k,  it  is  evidently  the  factor  of  Dx.fn+.  in  the  value  of 

—  SBjjp.     In  the  value,  therefore,  of  the  determinant 

■2  +  SBSBj   2BW, 

the  factor  of  I?x/,A,/»+i   A /„+„,  is 

(_)»+i^-j:<e<igJ   <®<w. 

But  the  factor  of  the  same  quantity  in  ̂ n+m  is,  by  inspection, 

(   )m+1^-\-Dx  fDx      f,        .    .Dr       f  Dx       f    ....  A:       f     , 

V  /  _!_  m  +  lJ  m  +  2^1    m+»^ii-r 

It,  therefore,  follows  from  (1915)  that 

2  ±  2B  SB}   SBW 

V  ;  n  +  1"*-    J_  m  +  1/  m  +  2/1    m+n  J  n  —  1" 

367.  The  factor  of  ̂ _JnJri  in  the  value  of  0Bj?  is  —  ̂ jf"1', 
and  therefore  the  determinant 

(— )-^  +  gB<@  ̂    <8£-« 
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is  in  (19112)  the  factor  of  Dxfn+1  D\fn+2,   Dxm-Jn+m>    But  the 
factor  of  this  same  quantity  in  §&>n+m  is,  by  inspection, 

(   f^  +  A      fDx      f,        .      Dx       f     ,DX  f     Dx  f 
\  J     — "    J_  n  +  lJ  n  +  lJ  1   n  +  m  J  m  —  1         mJ  m    „  J  n 

=  C   )"l»+l)  2  +  Dx     fDx  f,  ......  Dx  f.    V  )  -" *  _!_  mJ  m  +  lJl    m  +  nJ  n' 

Hence  it  follows  from  (1915)  that 

2±®<®1%   ^_1) 
—  (_V +1  <m«   .  2  +  Dx    fDx       /.   Dx       f  . 

368.  By  the  same  process  it  will  be  found  that,  in  general, 

;s  +  SB  SB;®?   0fc1)C@/^+1   (^-1} 
—  (   V'  +  '6j5"'    ̂   +  -0*  fDx  f  Dx        f   ,.    . 

369.  If  the  factor  of  S^  in  the  value  of  (19129)  is  denoted  by 

( — ykk,  this  expression  gives 

2  +  <&%%   «a-«  =  ̂ (*A) 

in  which  neither  the  quantities  ((®ki]),  nor  any  function  of  them,  such 
as  Xk,  contain  the  derivatives  of/„.  Hence  the  derivative  of /„,  with 

respect  to  xn+k,  only  occurs  in  this  expression  because  it  is  in  ̂ k,  in 

which  its  coefficient  is  ̂ B_!,  so  that  the  term  of  the  preceding 

expression  which  contains  this  derivative  is  Xk%>n_1Dx  hfn.  If  fj,k 
is  the  coefficient  of  the  same  derivative  in 

2  +  Dx    fDx       f.      ...   Dx       f 

the  equation  (1928)  gives 
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The  comparison  of  (1929)  with  this  equation  gives 

It  is  to  be  observed  that,  from  their  definitions,  the  functions 

fik  and  2BA.  are  both  of  them  partial  determinants  of  the  same 

functions  /,  /i,  •  • .  ./„_i  the  former  being  taken  with  respect  to 

the  variables  xm,  xm  +  1  ....  xn  +  m  excluding  xn+k,  and  the  latter 

being  taken  with  respect  to  the  variables  x,  x1  . . . .  xn_1  and  x)l+k. 

In  the  case,  therefore,  in  which  m  and  n  are  equal,  these 

two  determinants  are  formed  with  respect  to  an  entirely  different 

set  of  variables,  and  each  of  the  variables  xn+k  is  taken  in  succession 

from  the  set  xn,  xn+1   x2n  in  forming  \i,k  and  combined  with  the 

set  x,  xx   xn_ x,  in  forming  2BA. 

370.  The  first  member  of  (1933)  does  not  contain  any  deriva- 
tive of /„  with  respect  to  a  variable  of  which  the  inferior  number 

is  less  than  m.  The  factor,  therefore,  of  such  a  derivative  as  Dxfn 

in  the  second  member  vanishes  identically  ;  which  is  represented 

by  the  equation 

2tfoZ  ±  D*n+k  fD*JxDxJ%   ^n_1/„_1)=  0. 

371.  If  in  the  equation  (1913) 

n  =  1, 

this  equation  becomes,  by  writing  n  —  1  for  in, 

%>n=^2±BxJ\DxJl   DxJl 
But 

25 
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so  that  if  x  is  supposed  to  be  a  function  of  the  other  variables  and 

/  to  be  equal  to  x,  these  equations  are  reduced  to 

zk(oAkn.J)  =  zk{^kD.kX)  =  z±Dxj\nxJi   bxji 
=  Qk  +  £k{cAkn,lx); 

1 

in  which 

and,  by  (1763),  —  okk  is  deduced  from  ok>  by  changing  the  deriva- 
tives relating  to  xk  into  the  derivatives  relatively  to  x.  This 

equation  is  derived  from  Lagrange. 

372.     In  the  greater  portion  of  these  formulas  upon  functional 

determinants,   the  derivative  taken   with  regard  to  either  of  the 

variables  may  be  supposed  to  be  frequently  repeated,  so  that  Dx 

may  be  substituted  for  Dx  ,  and  h  may  even  be  zero.     Thus  if,  in 

§  365,  Dx  is  substituted  for  Dx,  and  if 

n  =  l 

the  equations  of  that  section  are  reduced  to 

=fD*Ji-fiD*J 

Hence  if —f2J)     A 

*'  =  7 

and  if  n  is  written  for  m-\-l,  the  equation  (19031)  becomes 
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If  each  of  the  functions  (/•)  is  multiplied  by  t,  the  values  of 

the  functions  (/,)  remain  unchanged,  and  therefore  the  value  of  the 
determinant 

is  multiplied  by  tn  +  l. 

373.  A  system  of  functions  (/•)  can  always  be  found  such  that 

their  determinant,  with  respect  to  the  variables  (#,-),  may  be  equal 

to  a  given  function  IT  of  those  variables.  For,  if  all  these  functions 

except  /„  are  assumed  at  pleasure,  and  if  f\  represents  the  form 

of  /„  when  all  the  variables  except  xn  are  eliminated  and  the 

remaining  functions  (/•)  are  introduced  in  their  place,  the  required 
determinant  becomes 

«.■=&*_!#.. /i  =  J7. 

Hence,/*,  is  by  (18710)  determined  by  the  integration 

in  which  it  must  be  observed  that  the  quantity  under  the  sign  of 

integration  is  expressed  in  terms  of/,/!   fn-i  and  xn. 
In  the  case  of 

77=1 

this  formula  becomes 

/i  =/.«£.  =/».-. 

The  substance  of  all  these  investigations  upon  determinants  is 

taken  without  important  modifications  from  Jacobi. 
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MULTIPLE    DERIVATIVES    AND    INTEGRALS. 

374.  The  functional  determinant  is  shown  by  Jacobi  to  be  of 

singular  use  in  the  transformation  of  multiple  derivatives  and  inte- 

grals. The  expression  of  these  functions  is  facilitated  by  the 
notation 

and J)n-m+l__ 
Jm  •  •  '  • 

VAnSm  +  l 

f*n  —  m  +  l 
1                       ■   ■ Pn  —  m-\-l 

J m  "  '  '  ' 

Jfm/m+l 

'Jni 

•Jn 

If  then 

£2  =  D}+]  W, 

a  new  variable  xn,  which  is  a  given  function  of  all  the  variables,  f{ 

may  be  substituted  for  either  of  them  as  /„  in  W,  and  the  new 

derivative  is  given'by  the  formula 

"     S2BxJn  =  I)}    BXnW. 

Another  new  variable  xn_x  may  next  be  introduced  instead  of 

/n_i  in  the  same  way,  and  this  process  may  be  repeated  of  substi- 

tuting successively  for  each  variable  ft  a  new  variable  wi}  which 

shall  be  a  function  of  all  the  other  variables  remaining  in  the 

derivative  at  the  instant  of  the  substitution  of  x{,  until,  finally,  an 

entirely  new  set  of  variables  shall  be  introduced  into  the  derivative. 
The  final  form  is 

^DxfDxJl   D.rJn  =  D'^W. 

From  the  comparison  of  this  form  with  §  351,  it  appears  that 
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the  factor  of  £2  is  identical  with  the  determinant  of  that  section. 

From  the  reasoning  of  §§  353  and  354,  it  follows  that  the  determi- 

nant is  not  changed  by  substituting  in  either  of  the  quantities  (/;) 

regarded  as  functions  of  the  variables  (#,•)  the  values  of  any  or  all 

the  preceding  functions  in  terms  of  these  variables.  But  each  of 

the  functions  (/,-)  contains,  in  its  present  form,  none  of  the  succeed- 

ing functions ;  so  that,  after  this  substitution,  it  is  expressed  in  terms 

of  (.r,) .     Hence 

375.     The  preceding  equation  gives,  for  the  multiple  integral 

in  which  the  limiting  values  of  (a?t-)  may  be  supposed  to  be  constant, 

while  those  of  (ft)  may  not  be  constant.  If  then  IT  is  determined 

by  the  integration 

n=ffn, 

so  as  to  contain  neither  of  the  variables  (#;)  except  as  they  are 

involved  in  (/,),  it  is  by  §  353  unnecessary  to  have  regard  to  the 

derivatives  of  IT  otherwise  than  as  they  are  dependent  upon  /  in 

finding  the  value  of  the  determinant,  which  is  the  first  member  of 

the  following  equation,  and  which  therefore  becomes 

s+n.n^fi^fi   DxJn  =  %,nDfn=  %va. 
But  by  (1898) 

Z±DxTTDXiflDxj2   DXnfn  =  v^.(/7o4,); 
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and,  therefore, 

//.!;fl=*J.^S(^A)=J?./;:.M,.i+1....Kms(7raki), 

in  which  limx  denotes  that  the  function  to  which  it  is  prefixed  is 

referred  to  the  limiting  values  of  xk,  so  that  the  difference  of  the 

values  of  the  function  at  these  two  limits  is  represented  by  this 
notation. 

But  since 

it  is  evident  from  (19713)  that 

£    \imx{IfQk)  =  limxJfn    II; 

and  a  similar  equation  may  be  given  for  each  of  the  terms  of  the 

last  member  of  (1983),  whereby  this  equation  is  reduced  to 

The  multiple  integral  of  the  (n  -\-  1)  th  order  is  thus  reduced  to 

2ra  -f-  2  multiple  integrals  of  the  wth  order,  and  this  reduction  may 
be  continued  until  the  whole  process  is  made  to  depend,  upon  single 

integrals,  of  which  one  is  performed  with  reference  to  /,  and  the 

number,  performed  with  reference  to  any  other  of  the  variables  (/;), 
is 

2l(n-\-l)n   (n  +  2  —  i). 
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II. 

SIMULTANEOUS    DIFFERENTIAL    EQUATIONS    AND    LINEAR    PARTIAL   DIFFERENTIAL 

EQUATIONS    OF    THE   FIRST    ORDER. 

37C     An  equation 

/=0, 

of  which  the  derivative  vanishes  identically,  by  means  of  the 

simultaneous  differential  equations  represented  by 

in  which  (X,)  are  given  functions  of  the  variables  (#,),  is  called  an 

integral  of  these  equations.  It  is  a  general  integral  if  it  involves  arbi- 

trary constants,  and  a  particular  integral  if  it  does  not  involve  arbi- 

trary constants.  When  it  involves  an  arbitrary  constant,  it  is  more 

conveniently  expressed  in  the  form 

f=a, 

in  which  a  is  an  arbitrary  constant. 

377.     A  function  /,  which  satisfies  the  linear  partial  differential 

equation  of  the  first  order 

is  called  a  solution  of  this  equation.     By  means  of  the  notation 

r.  =  i,(JrA) 
0 

'    m,n    -~"(\,-'1j         i)  " 
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this  equation  may  be  written 

^./='0. 378.  The  first  member  of  every  integral,  expressed  in  the  form  (1998) 

or  (19919),  of  the  simultaneous  differential  equations  (199n)  is  a  solution  of 

the  partial  differential  equation  (2002)  ;  and,  conversely,  every  solution  of 

the  partial  differential  equation  (2002)  is  the  first  member  of  an  integral  of 

the  simultaneous  differential  equations  (1998),  and  its  second  member  is  any 

constant.  For  the  derivative  of  (1998)  or  (19919)  vanishes  by  the 

substitution  of  (199n),  which  gives 

2t(l>.lfDxt)  =  rnf=0, 

that  is,  /  satisfies  the  equation  (2002).  Reciprocally,  the  satisfying 

of  this  condition  is  all  that  is  required  in  order  that  (19919)  may 

be  an  integral  of  (1998). 

379.  If  the  equation  (1998)  is  solved  relatively  to  x,  so  as  to 

express  x  as  a  ftfnction  of  the  other  variables  (#,-),  the  equation 

(19925)  becomes 

x—  r1,nx  =  o, 

which  is  distinguished  from  (2002),  because  the  function  x,  of  which 

the  derivatives  are  taken,  is  involved  in  the  functions  (-X*),  whereas 

/  is  not  involved  in  these  functions. 

380.  A  solution  of  (2002)  which  shall,  for  a  given  equation 

between  the  variables,  become  equal  to  a  given  function,  may  be 

determined  by  means  of  series.  For  this  purpose,  let  the  given 

equation  be t  =  r, 

in  which  t  is  constant,  and  t  a  function  of  the  variables,  and  let  the 
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solution  become  a  function  c/>  of  the  variables  when  this  equation  is 
satisfied.  If  then  t  were  assumed  to  be  also  one  of  the  variables 

of  the  given  equation,  and  such  that  in  forming  the  simultaneous 

equations 
Dt—1; 

by  which  the  simultaneous  equations  become 

Dlxi  =  Xi; 

and  the  given  partial  differential  equation  is 

assume  the  functional  notation 

□  =■—//., 

and  the  integral  of  the  partial  differential  equation  with  reference 
to  t  is 

/—  9—  D/=0, 
which  gives 

(1  — D)/=y» 

0 

This  value  of/  taken  from  Cauchy,  expresses  a  true  solution  of 

the  given  equation  if  □'(p  is  finite  for  all  values  of  i  and  vanishes 
when  i  is  infinite,  which  is  always  the  case  for  sufficiently  small 

values  of  t  —  t  . 

381.  There  are  n  independent  solutions  of  the  partial  differential 

equation  (2002)  and  no  more  than  n  independent  solutions. 26 
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First.  The  equation  (2002)  has  n  independent  solutions.  It 

has  been  proved  in  the  preceding  section  that  it  has  one  such  solu- 

tion.    Let  it  then  be  assumed  that  m  such  independent  solutions 

have  been   obtained,  denoted   by  fn,  fn-\   /»-m+i-      These 

independent    solutions    may   be    substituted   for   the   m   variables, 

xn,  xll_1   xn_m+1,  with  regard  to  which  they  are  independent ; 

and  if  fX:f  denotes  the  value  of/  when  expressed  in  terms  of  the 

new  variables,  the  equations  of  substitution  are  represented  by 

n  —  m  -\- 1 

But  since 

the  substitution  of  these  equations  in  (2002)  reduces  it  to 

r 

in  which   the   functions  fk  may  be   regarded   as   constant.      This 

reduced  equation  has,  then,  a  solution  by  the  preceding  section ; 

its  solution  does  not  involve  the  variables  xn,  xn_\   xn_m+l, 

and  is  independent  of  the  given  m  solutions.  The  given  equation  is 

then  proved  to  have  another  solution  independent  of  the  given 

solutions ;  and  this  number  may  again  be  increased  by  the  same 

process,  until  the  n  independent  solutions  are  obtained,  fi,f2  • .  •  •  ./„. 

Secondly.  The  equation  (2002)  cannot  have  more  than  n  inde- 

pendent solutions.  For  if  there  are  (n  -\-  1)  solutions  (/,),  each 

gives  an  equation  represented  by 

which  may  be  regarded  as  a  linear  equation  between  the  quantities 
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(X;).  By  the  usual  process  of  elimination,  if  $%  denotes  the 

functional  determinant  of  (/,)  with  respect  to  the  variables  (#<), 

these  equations  give,  by  §  340, 

But  all  the  quantities  Xt  do  not  vanish,  and,  therefore, 

^„  =  o, 

or  the  (n  -f-  1)  functions  (f)  are,  by  §  355,  not  independent  of  each 
other. 

382.  It  is  evident,  from  the  preceding  demonstration,  that  any 

function  of  the  solutions  of  the  linear  partial  differential  equation  (2002)  is 

itself  a  solution  of  that  equation. 

383.  A  system  of  finite  equations,  of  which  the  derivatives 

are  satisfied  by  the  simultaneous  equations  (19912),  is  called  a  system 

of  integral  equations  of  the  simultaneous  differential  equations.  This  system 

is  said  to  be  general,  when,  by  the  successive  elimination  of  the  con- 

stants, it  can  be  reduced  to  a  form,  in  which  each  equation  involves 

an  arbitrary  constant  not  included  in  the  other  equations,  and  it  is 

complete  when  the  number  of  finite  equations  is  equal  to  that  of  the 

given  differential  equations.  When  reduced  in  the  method  just 

proposed,  the  general  system  is  represented  by 

in  which  the  functions  (</>,)  are  independent  of  the  arbitrary  con- 

stants (pi).  The  particular  system  is  represented  by  a  set  of  similar 

equations,  combined  with  other  equations,  which  involve  no  arbitrary 

constants,  and  which  are  represented  by 
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384.  Each  equation  of  a  general  system  of  integral  equations, 

reduced  to  the  form  (20324),  is  an  integral  of  the  given  simultaneous  differ- 

ential equations.  For  the  derivative  of  (20324),  when  reduced  to  a 

finite  equation  by  the  substitution  of  the  given  differential  equations, 

is  independent  of  the  arbitrary  constants  (/?;),  and  vanishes,  there- 

fore, independently  of  the  equations  themselves  in  which  these  con- 

stants are  involved.  When  the  system  is  general,  therefore,  the 

functions  (^,)  are  functions  of  the  solutions  (f)  of  the  partial  differ- 
ential equation  (2002). 

385.  If  the  system  is  particular,  and  if  the  number  of  the 

equations  (20331),  which  are  free  from  arbitrary  constants  is  m  —  n, 
the  same  number  of  variables  can  be  eliminated,  by  their  aid,  from 

the  functions  (Xt)  and  (<p,).  The  equations,  to  which  (20324)  are 

thus  reduced,  are  integrals  of  the  simultaneous  differential  equations, 

represented  by 

Dxi  =  Xi, 

in  which  the  variables  (%?),  of  which  the  number  is  m,  are  those 

which  are  not  eliminated  from  (X^)  and  ((/),)„ 

386.  The  system  of  equations  (20331)  is,  by  itself,  a  particular 

system  of  integral  equations  of  the  given  differential  equations, 

which  does  not  contain  any  arbitrary  constant.  For  the  derivative  of 

either  of  them,  involving  no  arbitrary  constant,  must  be  satisfied  by 

means  of  the  equations  (19912)  and  (20331),  without  any  aid  from  the 

equations  (20324).  The  derivative  of  each  of  the  equations  (20324) 

is,  for  the  same  reason,  satisfied  by  the  same  equations  (19912)  and 

(20331),  without  the  assistance  of  the  equations  (20324). 

387.  The  functions  (f)  may  be  supposed  to  be  introduced  as 

the  variables  instead  of  the  given  variables  (%{).  By  this  substitu- 

tion, the  proposed  system  of  differential  equations  assumes  the  form 
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Dx  =  X, 

By  this  same  substitution  in  the  equations  (20324)  and  (20331),  the 

equations  (20331)  may  be  readily  reduced  by  processes  of  elimination 

to  an  equal  number  of  equations  of  the  form 

fi  =  Fi} 

in  which  the  functions  (Ff)  do  not  involve  those  of  the  functions  (/,) 

of  which  the  values  constitute  the  first  members  of  these  equations. 

Hence  the  derivatives  of  these  equations,  reduced  to  a  finite  form 

by  the  substitution  of  (2052)  become  of  the  form 

D(Fi—fi)  =  XDxFi=0, 
or 

DxF;  =  0. 

But  this  equation  does  not  involve  either  of  the  functions  (/,) 

which  are  not  contained  in  (F{),  and,  therefore,  cannot  depend  upon 

the  equations  (2058).  It  is,  therefore,  identical,  the  functions 

(F;)  are  independent  of  x,  and  the  equations  (20331)  from  which  they 

are  derived,  contain  only  the  functions  (f).  The  substitution  in 

(20331)  of  the  arbitrary  constants  (a()  for  the  functions  (f)  to  which 

they  are  equivalent,  reduces  these  equations  to  conditional  equa- 

tions between  the  arbitrary  constants.  These  equations  (20331),  there- 

fore, represent  the  conditional  equations,  to  which  the  arbitrary  constants  of 

the  integrals  of  (19912)  must  be  subject,  in  order  that  they  may  coincide  with 

the  particular  system  of  integral  equations,  to  which  the  equations  (20331) 

belong.  After  the  introduction  of  the  functions  (f),  instead  of  the 

variables  (.r(),  into  the  functions  (cp^,  these  functions  (cp{)  can,  by  the 
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substitution  of  (2058),  be  freed  from  all  the  functions  (/,)  which  are 

not  contained  in  (i^:).  The  derivatives  of  (c^)  when  thus  reduced 

become,  by  means  of  the  equations  (2052),  of  the  form 

I)cpi  =  XI)xcpi=0, 

which  must    vanish    independently  of  the   equations   (2058),  and, 

therefore,  the  functions  ((p{)  do  not  involve  x.    Hence,  by  the  substitution 

°f  (%i)  for  {fi)  the  equations  (20324)  give  the  values  of  (/^)  in  terms  of  (at). 

388.     From  any  one  given  integral  equation,  denoted  by 

w  =  0 

the  whole  system  of  integral  equations,  to  which  it  belongs,  can  be 

readily  obtained.  For  the  finite  equation,  to  which  the  derivative 

of  this  equation  is  reduced  by  the  substitution  of  the  given  differen- 

tial equations,  is,  from  the  very  nature  of  the  problem,  another  of 

the  required  system  of  integral  equations.  The  derivative  of  this 

new  equation  gives  a  third  integral  equation,  and  the  continuation 

of  this  process  leads  to  the  final  determination  of  the  whole  of  the  required 

system  of  integral  equations. 

389.  This  process  of  deriving  a  system  of  integral  equations 

from  one  of  its  component  equations,  affords  the  means  of  testing  a 

proposed  equation,  and  ascertaining  whether  it  be  an  integral  equa- 

tion. For  as  great  a  number  of  independent  integral  equations  is 

not  admissible  as  that  of  the  variables  themselves ;  if,  therefore,  the 

application  of  the  process  to  a  proposed  equation  conducts  to  a  number  of 

independent  equations  equal  to  that  of  the  variables,  it  is  a  sufficient  proof 

that  the  proposed  equation  is  not  an  integral  equation. 

390.  When  a  system  of  integral  equations  contains  superfluous 

arbitrary  constants,  that  is,  constants,  which  remain  in  the  functions 

((pi),  after  the  system  is  reduced  to  the  form  given  in  §  383  ;   such 
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constants  supply  the  means  of  obtaining  other  integral  equations 

which  are  not  contained  in  the  given  system.  Thus  if  (206n)  denotes 

an  integral  equation,  from  which  the  proposed  system  may  be  sup- 

posed to  be  derived,  so  that,  reciprocally,  this  equation  may  be 

derived  from  the  proposed  system,  and,  therefore, 

in  which  F  is  any  arbitrary  function  ;  and  if  the  notation  is  adopted 

^=\T,(jvDftii), 

in  which  arbitrary  constants  are  denoted  by  (/,) ;  the  equation 

is  also  an  integral  equation.     For  the  equation 

Du  =  0 

gives,  by  direct  differentiation, 

But  it  is  obvious,  from  the  form  of  (2076),  that  the  derivatives 

of  u  with  reference  to  those  of  the  constants  (/?.;),  which  are  elimi- 

nated from  the  functions  (9);)  and  to  which  these  functions  are  equal, 

are,  themselves,  functions  of  (cp{  —  /5£)  and  1/^  ;  whereas  the  deriva- 

tives of  u  with  reference  to  the  superfluous  independent  constants 

(/?,-),  which  are  contained  in  the  functions  ((jp£),  are  not  merely  func- 

tions of  (cfi  —  fa)  and  i|v  Hence  the  integral  equation  (207i3)  is  a 
new  equation,  if  it  contains  the  derivative  of  u  with  reference  to 

either  of  the  superfluous  constants  (/?,-),  and  there  are  as  many  of 

these  new  equations  as  there  are  superfluous  constants.  But  the 

number  of  independent  integral  equations  thus  obtained,  is,  of  course, 
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subject  to  the  condition,  that  it  cannot  exceed  the  number  (n)  of 

the  independent  solutions  of  the  equation  (2002). 

391.  Of  all  systems  of  integral  equations,  that,  in  which  the 

arbitrary  constants  are  the  values  which  the  variables  themselves 

assume  for  a  given  value  of  one  of  them,  deserves  especial  consider- 

ation. To  simplify  the  discussion  of  this  case,  and  place  it  in  the 

position,  in  which  it  will  best  illustrate  the  problems  of  mechanics, 

the  variable  {x),  of  which  the  value  is  given,  may  denote  the  time, 

and  the  given  time  is  the  epoch  or  origin,  at  which  the  elements  of 

the  system  of  variables  are  given,  and  from  which  the  variations  are 

estimated.  The  values  of  the  variables  at  this  beginning  of  time 

may  be  termed  their  initial  values,  while  those  at  any  subsequent 

time  are  their  final  values.  The  differential  equations  express  the 

laws  of  change,  under  which  the  variables  pass  from  their  initial  to 

their  final  values,  and  are  equally  compatible  with  any  proposed 

combination  of  initial  values.  The  initial  values  are,  therefore,  ivholly 

arbitrary  and  independent.  Their  number  is  equal  to  that  of  the  variables 

(%i),  and,  consequently,  equal  to  the  ivhole  number  of  independent  arbitrary 

constants,  which  is  required  for  the  complete  integral  equations. 

The  epoch  is  also  arbitrary,  and  seems  to  introduce  an  addi- 

tional arbitrary  constant.  But  this  constant  is  obviously  superflu- 

ous ;  it  corresponds  to  the  arbitrary  position  of  the  problem  in 

time,  without  involving  any  modification  of  the  essential  conditions ; 

and  is  the  complement  of  the  arbitrary  element,  which  is  not 

expressed,  and  in  reference  to  which  the  derivatives  in  the  equations 

(19912)  are  supposed  to  be  taken. 

392.  The  passage,  down  the  stream  of  time,  from  the  initial  to 

the  final  values,  conformably  to  the  conditions  of  change  expressed 

in  the  differential  equations,  may  be  imagined  to  be  reversed  and, 

in  a  retrograde  transit,  the  same  laws  of  change  would,  by  their 

reverted  action,  restore  the  variables  to  their  initial  values.     In  the 
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direct  action,  the  initial  values  constitute  the  cause,  and  the  final 

values  are  the  effect ;  whereas,  in  the  reverted  action,  the  final 
values  become  the  cause  of  which  the  initial  values  are  the  effect. 

Hence  it  follows  that,  in  any  integral  equation  between  the  final  and  the 

initial  values  of  the  variables,  the  final  and  initial  values  of  each  variable 

may  be  mutually  interchanged,  and  the  resulting  equation,  if  not  identical  with 

the  given  equation,  is  a  new  integral  equation.  In  making  this  change,  the 

sign  of  the  variable,  ivhich  expresses  the  interval  of  time,  must  be  reversed, 

because  the  interval,  which  is  positive  with  reference  to  the  initial 

epoch,  is  negative  with  reference  to  the  final  epoch.  If,  indeed,  the 

interval  were  expressed,  by  means  of  the  initial  value  (x0)  and  the 

final  value  (x)  of  the  time,  in  the  form  (x  —  x0),  its  sign  is  directly 
reversed  by  the  mutual  interchange  of  the  initial  and  final  values, 

which  transforms  its  expression  to  (x0  —  x). 

393.  Let  F°  denote  the  form,  which  any  function  F  of  the 
final  and  initial  values  of  the  variables  assumes  after  the  mutual 

interchange  of  these  values  ;  and  let 
#°  =  fjpi, 

represent  the  system  of  integral  equations  reduced  so  that  the 

functions  ((/),)  do  not  involve  the  initial  values  (%{).  The  inter- 

change of  the  initial  and  final  values  in  this  system,  produces  a 

system  of  integral  equations  in  which  each  variable  is  expressed  in 

terms  of  that  one  variable,  which  represents  the  time,  and  of  the 

arbitrary  constants  which  are  the  initial  values  of  the  variables. 

This  new  system  is  represented  by 

394.  The  discussion  has,  hitherto,  been  limited  to  differential 

equations  of  the  first  order,  but  it  can,  readily,  be  extended  so  as  to 
27 
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embrace  those  of  higher  orders.  If,  for  instance,  the  equations  are 

given  in  the  form 

in  which  the  functions  (X{)  may  involve  all  the  derivatives  of  the 

variables  (xt),  which  are  of  an  order  inferior  to  (p?),  each  of  these 

inferior  derivatives  may  be  regarded  as  an  independent  variable, 

expressed  by  the  form 

x^  =  D]xi. 

With  this  new  system  of  variables  the  given  equations  are 

replaced  by  the  differential  equations  of  the  first  order,  represented 

by 

Dx{?-1)  =  z{?\ 

Dxp~^  =  Xi, 

Dt=l. 

The  number  of  these  differential  equations  of  the  first  order  is 

easily  seen  to  be  (-2^  -f- 1) . 

395.  When  the  differential  equations  are  not  given  in  the 

normal  form  (2103),  they  can  always  be  reduced  to  this  form.  For 

this  purpose,  each  of  the  equations,  which  contains  none  of  the 

highest  derivatives  of  the  variables,  must  be  differentiated  as  many 

times,  denoted  by  a,,  as  are  necessary  to  raise  it  to  an  order,  which 

contains  such  derivatives.    If  the  given  equations  are  represented  by 

the  equations,  which  are  thus  derived  from  them,  may  be  expressed 

by 
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in  which  a •  is  zero,  when  it  is  applied  to  an  equation  which  is  not 

differentiated.  Each  of  the  derived  equations  contains  at  least  one 

of  the  highest  derivatives  of  the  variables,  which  may  be  expressed 

by  Z^i+aiXi.  The  functions  ((/),)  should  be  independent  functions  of 
these  derivatives ;  whenever  this  is  not  the  case,  such  derivatives 

can  be  eliminated  from  the  derived  equations,  and  one  or  more 

resulting  equations  will  be  obtained  in  which  they  are  not  involved. 

The  independence  of  the  functions  ((/>,-)  can,  however,  be  directly 

tested  by  means  of  their  determinant  (18529),  which  vanishes  when 

it  is  taken  with  respect  to  quantities,  for  which  these  functions  are 

not  independent. 

When  the  functions  ((/>,)  are  independent  with  respect  to  the  highest 

derivatives  contcdned  in  them,  the  required  normal  equations  (2103)  are 

obtained  from  the  given  equations  and  their  successive  derivatives  of  an  order 

not  higher  than  those  of  the  derived  equations  (21031)  by  the  usual  process 

of  elimination.     For, 

First,  there  is  a  sufficient  number  of  equations,  because  the 

number  of  equations,  added  to  the  given  equations  by  differentiation, 

is  2^  which  is  the  same  with  the  number  of  derivatives,  superior 

to  the  order  (p{),  the  highest  of  which  are  to  be  retained  in  the 

normal  equations. 

/Secondly,  these  equations  are  independent  of  each  other  in 

respect  to  the  derivatives  of  the  order  (p{),  and  of  the  superior  orders, 

and,  therefore,  sufficient  for  the  required  elimination;  because  if  any 

of  the  equations  of  the  inferior  orders  were  not  independent,  their 

derivatives,  which  are  included  in  the  group,  (21031)  would  not  be 

independent  of  each  other. 

396.  When  the  functions  (y,-)  are  not  independent  with 

respect  to  the  highest  derivatives  contained  in  them,  each  of  the 

equations  of  an  inferior  order,  obtained  from- the  derived  equations 

by  elimination,  can  be  substituted  for  one  of  the  derived  equations, 
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which  is  necessarily  involved  in  the  elimination  by  which  the 

reduced  equation  is  obtained.  If,  therefore,  one  of  the  given 

equations  is  involved  in  the  elimination,  the  order  of  the  given 

equations  is  reduced  by  the  substitution  of  the  given  equation.  But 

if  all  the  equations,  necessarily  involved  in  the  elimination,  were 

derived  by  differentiation  from  the  given  equations ;  and  if  a 

denotes  the  smallest  number  of  successive  differentiations,  by  which 

either  of  these  derived  equations  was  obtained  ;  the  reduced  equa- 

tion is  obviously  a  derivative  of  the  order  («)  of  an  equation, 

which  can  be  obtained  by  direct  elimination  from  those  of  the 

given  equations,  which  are  of  an  order  inferior  by  (a)  to  the 

derived  equations,  combined  with  the  derivatives  of  the  other 

given  equations  of  an  inferior  order.  This  reduced  equation  of 

an  inferior  order  may,  then,  be  substituted  for  either  of  the  given 

equations  of  a  higher  order,  upon  which  its  elimination  neces- 

sarily depends.  In  all  cases,  therefore,  in  ivhich  the  functions  (<jp,-)  are 

not  independent  ivith  respect  to  the  highest  derivatives  contained  in  them, 

the  order  of  the  given  equations  can  he  reduced  by  the  substihdion  of 

an  cqucdion  of  an  inferior  order  obtained  by  elimination  between  some  of 

the  given  equations  and  the  derivatives  of  others,  which  are  of  an  inferior 
order. 

397.  That  the  normal  forms,  obtained  by  the  process  of  §  395, 

are,  as  it  was  remarked  by  Jacobi,  those  which  are  obtained  with  the 

least  complexity  of  operation,  is  easily  perceived  without  any 

attempt  at  demonstration.  It  is,  also,  obvious,  by  what  modes  of 

substitution  other  normal  forms  can  be  derived  from  these,  which 

are  equivalent  to  them  in  the  aggregate  order  of  differentiation,  but 
differ  in  the  distribution  of  the  derivatives.  Thus  if  either  of  the 

functions  (Xi)  is  of  an  order  inferior  by  (qi)  to  that  of  the  given 

equations,  it  is  by  (q{)  successive  differentiations  elevated  to  an  order 

which  contains  one   or  more  of   the  highest    derivatives   involved 
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in  the  normal  forms.  The  ($-,-)  th  derivative  of  the  equation  (2103), 

after  the  values  of  the  highest  derivatives,  given  by  the  normal 

equations,  are  substituted  in  its  second  member,  so  that  it  is 

expressed  in  the  form 

D^Xi  =  X\ 

"   5 

may  take  the  place  of  this  equation  in  the  system  of  normal  equa- 

tions. If  then  Dr/~qiXi'  is  one  of  the  derivatives  contained  in  (X{), 
and  if  the  normal  equation  (210a)  is  reduced  to  the  form 

it  may  take  the  place  of  the  equation 

■U  t'   %i'  ——  Xi/ 

in  the  group  of  normal  equations.  By  means  of  (21314)  and  its 

derivatives  of  an  order  inferior  to  the  (<7;)th,  all  the  other  equations 

may  be  reduced  so  as  only  to  contain  derivatives  of  (%f)  of  an  order 

inferior  to  the  (pv  —  <7,)th.  The  normal  system  is  by  this  means  trans- 
formed to  another  normal  system,  in  ivhich  the  highest  derivative  of  one  of  the 

variables  is  increased,  just  as  much  as  that  of  another  of  the  variables  is 
decreased. 

398.  The  repetition  of  the  process  of  the  preceding  section 

may  be  so  conducted  that  one  or  more  of  the  variables  shall  finally 

disappear  from  the  system  of  normal  equations,  and  the  number  of 

equations  will  be  simultaneously  diminished  to  the  same  amount  as 

that  of  the  variables.  The  process  may  be  continued,  indeed,  until 

only  two  variables  remain,  one  of  which  is  the  variable  (t),  with 

respect  to  which  the  derivatives  are  taken ;  but  the  reduction  to 

this  form  involves  the  greatest  prolixity  and  complexity  of  computa- 

tion.    There  are  special  cases,  however,  and  particularly  that  of 
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linear  differential    equations,  in  which  this  mode  of  reduction   is 

peculiarly  advantageous. 

The  principal  portion  of  this  discussion  of  differential  equations 

is  the  combined  result  of  the  investigations  of  Euler,  Lagrange, 

Cauchy,  and  Jacobi  ;  but  an  important  addition  to  these  researches 

is  now  to  be  developed,  for  which  geometry  is  eminently  indebted 
to  Jacobi. 

THE   JACOBIAN    MULTIPLIER    OF   DIFFERENTIAL    EQUATIONS. 

399.  The  function,  which  was  called  by  Jacobi  the  neio  multiplier, 

in  order  to  distinguish  it  from  the  Eulerian  multiplier,  but  which,  on 

account  of  its  superior  importance,  is  here  distinguished  simply  as 

the  multiplier  of  a  linear  partial  differential  equation  of  the  first  order 

represented  by  (2002),  is  that  function  which,  multiplied  by  this  equation, 

renders  its  first  member  an  exact  functional  determinant  (^„)  of  the  indefi- 

nite function  (/)  and  of  n  undefined  functions  (f)  with  respect  to  the  (n  -f- 1) 

variables  (x(),  zvhich  are  the  independent  variables  of  the  given  equation.  On 

account  of  the  mutual  relations  of  the  partial  differential  equation 

(2002)  and  the  simultaneous  differential  equations  (19912),  this  same 

function  may  also  be  regarded  as  a  multiplier  of  the  differential  equations 

(19912)  ;  and,  for  the  same  reason,  it  may  be  considered  as  a  multiplier 

of  the  linear  partial  differential  equation  of  the  first  order  (20020)  of  n 

independent  variables. 

400.  If  either  of  the  functions  (f),  or  any  function  of  these 

functions,  is  substituted  for  /,  the  determinant  vanishes,  by  §  352, 

and  the  equation  (2002)  is  satisfied.  The  functions  (f)  are,  therefore, 

n  independent  solutions  of  the  equation  (2002). 

401.  If  the  multiplier  of  the  equation  (2002)  is  denoted  by 

^®Mt>,  the  condition,  by  which  the  multiplier  is  defined,  is  expressed  by 
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the  identical  equation 

The  equality  of  the  coefficients  of  Zk./in  the  two  members  of 

this  identity  is,  by  the  notation  adopted  in  the  theory  of  determi- 

nants, expressed  by  the  formula 

The  substitution  of  this  value  of  o/b^in  the  equation  (1892)  gives 

the  equation 

2iDXi(^Ms>Xi)  =  0, 

"which  is  a  linear  partial  differential  equation  of  the  first  order,  by  ivhich 
the  multiplier  is  analytically  defined. 

402.  The  defining  equation  of  the  multiplier  may  by  (19912) 

be  developed  into  the  form 

^(XiD^.^Ms  -f  yJztioDXtXi)  =  S^D^ys^fLD^  +  ̂ A.I;)  =  0, 

or 

fn ̂ Ms  -f  idA> ZiDz.Xi  =  D  ̂ ((d  _j_  <sdi> S^Xt  =  0 . 

This  equation  divided  by  <J$Ms  becomes 

Fn  log  ob4  -f  SiD^Xi  =  D  log  oaA  _|_  S^X,  =  0 . 

If  all  the  variables  are  regarded  as  functions  of  x,  and  if  x  is 

introduced  in  place  of  the  element  of  variation,  by  means  of  the 
formula 

Dx  =  X, 
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the  preceding  equation  finally  assumes  the  form 

XDX  log  ̂ Mo  +  ZiD^Xi  =  0 ; 

which  is  an  equation  involving  common  differentials,  by  which  the  multiplier 

is  analytically  defined. 

403.     The  equation  (2158)  gives,  by  (1948),  when 
t  =  0, 

the  value  of  the  multiplier  in  the  form 

JUMd 

X    
' 

404.  If  the  values  of  (/,)  are  expressed  in  terms  of  (#,-),  by 

means  of  the  equations  (189]2),  and  if,  by  reason  of  the  integrals 

(19910),  the  constants  (a,)  are  substituted  for  (/;),  the  value  of  the 

multiplier  becomes 

^m  —  V      )    X'^Da^D^F,   £anFn> 

in  which  the  sign  may  be  rejected  at  pleasure. 

405.  In  the  particular  case,  in  which  the  equations  (189]2) 
assume  the  form 

%i  =  (pi, 

in  which  the  functions  (g^)  involve  the  arbitrary  constants  (a,-), 

together  with  no  other  variable  than  x,  the  value  of  the  multiplier 

is  by  (18912)  reduced  to 

<£}Md 

XS±D<h ^  Az2  ̂    F>an %  ~~  X2+.  Da^Da.^   Da,xn 

  1          1 

XS±DAxyDhxi   Dfnxn  —  Xqj^'> 
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which  equation  might  have  been  directly  deduced  from  (216n)  and 

(18710). 

406.  If  the  functions  (F{)  are  given  independent  functions  of 

(/,),  they  are  independent  solutions  of  the  equation  (2002)  and  give 

a  multiplier  (uatfc,-)  different  from  >J2ii,  and  which  is  determined  by 

the  equation  derived  from  (216n), 

X^  =  S±  DXlFxDXiFz   DXn  Fn. 

This  equation,  by  means  of  (18614)  and  (216n),  assumes  the  form 

X^Moi=%1}a2±I)flF1I)f2F2   DfnFn 

=  X^M>Z±DflF1I)fiF2   DfaFn, 

which  gives 

^=  Z±DAFxDf2F2   DfaFn. 

The  second  member  of  this  equation  is  a  function  of  the  func- 

tions {fi),  and  may  be  an  arbitrary  function  of  these  functions,  so 

that  it  can  have  n  independent  values.  The  equation,  therefore, 

serves  to  determine  n  -J-  1  independent  values  of  the  multiplier 

(vjb^d,.),  which  is,  by  (21512),  the  whole  number  of  independent  values 

of  which  it  is  susceptible.  Hence,  the  ratio  of  any  two  multipliers  is  a 

solution  of  the  equation  (2002).  It  also  follows  from  this  argument  that 

every  solution  of  the  equation  (21512)  is  a  value  of  the  multiplier. 

407.     In  the  particular  case,  in  which 

2,1).^  =  0, 

one  of  the  n  -\-  1  solutions  of  (21512)  is  reduced  to  a  constant,  so  that 

in  this  case,  the  constant  must,  contrary  to  the  ordinary  usage,  be 

included  among  the  solutions  of  the  equation.     The  constant  may 28 
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be  supposed  to  be  unity,  and,  therefore,  one  of  the  multipliers  of  the  equa- 

tion (2002)  is  unity,  ivhen  the  condition  (2172V)  ̂   fulfilled,  and  all  the  other 

multipliers  are  solutions  of  the  equation  (2002). 

408.  When  the  solutions  (/{)  of  the  equation  (2002)  are  known, 

the  corresponding  value  of  the  multiplier  may  be  determined  from 

(216n).  But  it  can  be  derived  by  a  shorter  process,  when  either 

of  the  solutions  (usM^.)  of  (21512)  is  known,  and  also  the  initial  value 
of  oh>.  Thus  if  II  denotes  the  ratio  of  ua^  to  <snMo,  the  equation 

(216„)  gives  by  (1947), 

When  the  initial  values  are  substituted  in  this  equation  with 

the  notation  of  §  393,  it  becomes 

qAd°    ' 
The  value  of  IT0  may,  by  the  elimination  of  the  variables  (xf) 

be  reduced  to  a  function  of  the  functions  (//) ;  and,  if  in  this 

expression  the  functions  (f)  are  substituted  for  their  initial  values 

(/!),  the  value  of  H  is  reproduced.  For  the  function,  which  is 

obtained  by  this  substitution,  is  a  function  of  (/*)  and  therefore  a 

solution  of  the  equation  (2002) ;  and  it  is,  moreover,  that  particular 

solution,  of  which  the  initial  value  is  the  given  function  JI°. 
409.  In  the  especial  case,  in  which  the  initial  values  of  (f)  are 

the  variables  (x{),  the  value  of  ok>°  is  obviously  reduced  to  unity  and 
the  equation  (218u)  becomes 

410.  When,  in  the  differential  equations  (199^),  the  arbitrary 
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element  of  variation  is  assumed  to  be  the  variable  x,  the  value  of  X 

is  unity ;  and,  in  this  case,  the  equation  (218n)  becomes 

IT"  ==  ̂ ^ 
which  in  the  case  of  the  preceding  section  is  reduced  to 

and  when,  moreover,  the  equation  (21727)  is  satisfied,  so  that  one  of 

the  multipliers  is  unity,  this  value  is  still  further  reduced  to 

n°  =  1. 

411.  The  arbitrary  constants  («,-)  may  be  substituted  for  the 

functions  (/,)  in  the  equation  (218n),  when  it  is  regarded  as  result- 
ing from  the  integrals  of  (19912).  By  this  substitution  IT  becomes  a 

function  of  the  arbitrary  constants,  which  may  be  represented  by  C, 

and  the  equation  gives,  by  means  of  (187i0), 

®hn  =  Z±  DaiXxDa2X2   DaXn  = 

<£}MsiX
' 

The  logarithm  of  this  equation  becomes  by  the  substitution  of 

(2162),  and  including  C  in  the  constants  of  integration, 

\0gZ±Da1X1I)a2X2   DanXn  =  log^-  +  log  C—  log  vflA, 

in  which  all  the  functions  (X{)  can  evidently  be  multiplied  by  any 

common  factor,  without  disturbing  the  equality. 

412.     In  the  especial  case  of 

X=l 
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the  preceding  formula  becomes 

log  2  ±  Da^Da,   DanXn  =J2iDxXi. 

413.  When  simultaneous  differential  equations  are  transformed 

from  one  system  of  variables  to  another,  the  multiplier  usually  under- 

goes a  change  at  the  same  time,  but  there  are  conditions,  to  which 

the  arbitrary  element  of  differentiation  may  be  subjected,  and  under 

which  the  multiplier  remains  unchanged.  Thus  if  the  new  system 

of  variables  is  represented  by  (?<>;),  if  the  equations  (19912),  in  their 

new  form,  are  represented  by 

in  which  the  accented   sign   of  differentiation   refers   to   the   new 

arbitrary  element  of  differentiation,  and  if 

u—  a 

15  —  °~>
 

the  values  of  ( Wt)  become,  by  (1992S)  and  the  preceding  formulae  of 
this  section, 

Wi  =  GDiVi  =  G2k  (Dxkiv{Dxk) 

=  G2k{XkDXktvi)  =  GFnivi. 

This  value  of  (  Wi),  in  combination  with  the  formulae  (19928)  and 

(2152),  gives 

2{  (  WtDWif)  =  G2k  [Xk2{  (DWifDXkwt)-\ =  G2k(XkDxJ) 
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If  oN  is  a  multiplier  of  (220x2),  the  defining  equation  of  (2152) 

is,  in  respect  to  this  multiplier, 

oN-^,.(  WtDvj)  =  Z± DwfDWlfx   DwJn. 

The  ratio  of  the  equations  (22027)  and  (2213),  reduced  by  means 

of(18613)  and  (187io),  gives 

Gdf_  _  Z+DJD^f,   Z>„„/„ 

   -*-       I     UWX  ±Jw^X-y   JJwn%n 

=  {2  ±  DxwDXlwx   D,wn)-\ 

If,  therefore,  the  multipliers  gN*  and  ̂ (t  are  equal,  the  value  of 
G  becomes  G\  if } 

G'  =  JS"  +  DwxDWlxx   DWnxn 

=  (JS"  +  DxtvDxxivx   Dxnivn)~x. 

414.  The  equation  (21525),  applied  to  the  new  system  of  varia- 

bles (tOf),  gives,  by  means  of  this  equation  and  (22017),  if  the  multi- 
pliers are,  for  the  instant,  assumed  to  be  equal, 

St  Dw.  Wi  =  —  D'  log  «jafl>  =  —G'D  log  <sM> 
=  G'ZiD^Xi. 

415.  If  the  arbitrary  element  of  differentiation  is  supposed  to 

be  the  same  in  both  systems  of  variables,  the  values  of  G,  Wt,  and 
cN*  become 

G—l, 
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416.  If  the  first  m  -j- 1,  only,  of  the  variables  (x{)  are 
exchanged  for  the  new  variables  («#,),  which  limitation  is  expressed 

by  the  formula 

the  value  of  G'  is  abbreviated  to 

G'  =  S  +  DwxDWlxx   DWmxm 

=  {Z±DxivDXlWl   DXmwm)-\ 

417.  Hence  if  the  arbitrary  element  of  differentiation,  com- 
mon to  the  two  systems,  is  one  of  the  variables  and  is  expressed  by 

t,  so  that  the  remaining  variables  are  still  denoted  by  (x{)  and  (w,), 

the  formula  (22115)  continues  to  express  the  value  of  G' . 
418.  If  the  last  {n  —  m)  of  the  variables  (tVi)  are  solutions  of 

the  equation  (2002),  the  corresponding  values  of  the  functions  ( W{) 

vanish  by  (22O22).  If  the  multiplier  is  also  supposed  to  remain 

unchanged,  the  partial  differential  equation  (2002),  by  which  it  is 

determined,  is  reduced  to 

m 

0 

The  arbitrary  constants  (/?,-)  may,  therefore,  be  substituted  for 

the  solutions  (^),  and  the  value  of  G'  becomes 

G    =  2  -T  DwXJJw1X1   ■^wmXm-^Pm+iXm  +  l-^'Pm+2Xm  +  2   -L'PnZ'n' 

419.  But  if,  instead  of  the  equality  of  multipliers,  the  ele- 
ments of  differentiation  are  identical  in  the  systems,  the  defining 

equation  is  expressed  in  the  slightly  different  form  of 

ZiDlVi(;G'<sdkWi)  =  0, 
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in  which  the  functions  ( Wt)  and  the  multiplier  (oN*)  are  given  by 
(22V). 

420.  If  the  variables  (w>€)  which  are  retained,  coincide  with 

the  original  variables  (x{),  the  equation  for  the  multiplier  becomes 

m 

o 

in  which 

G  =  2±  I>pm+1z,n+1  Dpm+2xm+2   Dpnxn 

=  {2  ±  Dxm+1wm+1DXm+2wm+2   DXnwn)-x. 

By  the  formulae  of  this  and  the  two  preceding  sections  the 

multiplier  of  the  system  of  differential  equations,  to  which  a  given 

system  is  reduced  by  means  of  any  of  its  integrals,  can  be  obtained 

from  the  multiplier  of  the  given  system.  This  will,  soon,  appear  to 

be  one  of  the  most  important  properties  of  multipliers. 

421.  If  the  given  differential  equations  are  of  an  order,  which 

is  higher  than  the  first  order,  and  have  the  normal  form  (2103),  the 

equation  (21525),  by  which  the  multiplier  is  defined,  is  simplified  by 
the  consideration  that 

i 

The  multiplier  of  the  given  equations,  or  of  the  equations  (21015),  by 

which  they  should  be  replaced,  is,  therefore,  determined  by  the  equation 

2) log  ̂tt>  -f-  Ji^-nJ;  =  0. 

422.  If  the  functions  X{  do  not  involve  #/p;-1)  or  if,  in  general, 

2iDjp-DXi  =  0, 

unity  is  one  of  the  values  of  the  multiplier  of  the  given  equations. 
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423.  If  the  given  equations  have  not  the  formal  form,  but 
have  the  form 

such  that  they  involve  no  derivatives  of  a  higher  order  than  the  nor- 

mal forms,  to  which  they  are  reducible  by  immediate  elimination 

"without  differentiation,  the  equation  for  determining  the  multiplier 
assumes  a  simple  symbolic  form,  by  means  of  the  notation 

For  it  is  to  be  observed  that  each  of  the  subsidiary  terms,  of 

which  the  second  term  of  the  equation  (22325)  is  the  aggregate,  is  to 

be  obtained  from  the  equations  (2243),  by  taking  their  derivatives 

relatively  to  x(p~1]  on  the  hypothesis  that  a$i)  are  functions  of  this 
variable,  and  thence  determining,  by  elimination,  the  values  of  these 

subsidiary  terms..    Hence  if 

ffi  —  DsPi-Vatei) 

the  derivatives  of  (2243),  relatively  to  x(/'i~1)  are  represented  by 
(17724),  provided  the  letters  t  of  that  equation  are  accented  *  times, 

and  the  number  k  is  written  below  the  u.  From  the  comparison  of 

(18018)  with  (224n),  it  appears  that  (i,k)  vanishes  in  the  present  case, 

and  that  the  sign  of  d  is  to  be  reversed,  whence  the  equation  (18026) 

becomes 

2SbtW  =  —  Jlogflt., 

The  equation  (22325)  by  which  the  multiplier  is  determined,  assumes  the 

symbolical  form 

D log  <shMd  =  —  ShW  =  d  log  $>„. 
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424.  It  may,  sometimes,  happen  that  the  values  of  aki]  and 

da$  are  such  that  the  sum  of  da^,  and  of  XDa{k],  in  which  X  is 

constant,  is  simpler  than  da1,!'1.     In  this  case,  if 
d'  =  d-{-lD, 

the  addition  of 

Z>log«*  =  X2>log«., 

to  the  equation  (22431)  gives  the  symbolical  form 

D  log  (ua4  sjj,J)  =  <T  log  9LB . 

425.  If  the  given  differential  equations  have  the  form  (21027), 

so  that  they  cannot  be  reduced  to  the  normal  form  without  differ- 

entiation, the  equations  (21031),  which  are  derived  from  them  by 

differentiation,  give,  by  direct  elimination,  a  system  of  normal  forms, 

which  include,  as  a  reduced  system,  the  normal  forms  finally  obtained 

by  the  process  of  §395.  The  multiplier  of  the  equations  (21027)  is 

determined  by  the  symbolic  equation  (22431),  or  (22510),  provided 

that  in  the  values  (22410)  of  a{i]  and  daf  from  which  <)l(3&„  is  consti- 
tuted, the  value  of^.  is  increased  by  ak. 

426.  The  values  of  aft  and  daf  may  be  determined  directly 

from  the  equations  (21027).  For  this  purpose,  if  X  is  written  instead 

of  a  in  order  to  avoid  the  confusion  which  might  arise  from  the  use 

of  a  as  an  arbitrary  constant,  and  if  the  ingenious  notation,  which 

is  familiar  to  the  German  mathematicians,  for  the  continued  product 

of  all  the  integers  from  1  to  X  inclusive, 

Xl  =  X(X  —  l)(X  —  2)   3.2.1, 

is  adopted,  the  equations  (21031)  are  represented  by 

29 
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and  we  find,  by  well-known  formulas, 

Dxu)(p  =  kvD}  [Dxm  FDxMxM'] 

v'
 

The  inferior  limit  v  is  determined  by  the  condition  that  neither 

V  nor  I  —  %  -4-  v'  can  be  negative.     Hence 

if  Ji_|_l>x,  v'=0, 

if  I  —  l<>r,  v'  =  x  —  X. 

In  the  former  of  these  two  cases  the  last  term  is 

!  —  DX~KD  F- 

but  in  the  latter  case  it  is  simply 

It  follows,  then,  from  (224]0)  that,  since  F{  does  not  contain  any 

higher  derivative  of  xk  than  pk, 

aV  =  D£iFt, 

427.  The  system  of  normal  equations,  derived  by  the  process 

of  §  395,  is  related  to  the  system  of  normal  forms,  which  has  been 

discussed  in  the  preceding  sections,  precisely  as  any  reduced  system 

of  differential  equations  is  related  to  that  from  which  it  is  reduced 

by  means  of  a  portion  of  its  integral  equations.  The  integral  equa- 

tions are,  in  this  case,  the  equations  (21027)  and  all  their  derivatives, 
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which  are  inferior  to  the  final  derivatives  expressed  by  equa- 

tions (21031),  the  multiplier  of  the  reduced  equations  is,  conse- 

quently, obtained  by  dividing  the  multiplier  <^Ms  of  the  equations 

(21031)  by  the  function  G  given  by  the  expression  (2239).  The 

functions  (to),  involved  in  the  value  of  G,  represent  the  first  mem- 

bers of  the  integral  equations  (21027)  and  their  derivatives.  But  it 

follows  from  (2264)  and  (22623)  that 

DxiPL+»)DhtFi  =  DxivK)F=ay. 

The  equations  (21027)  may,  now,  be  supposed  to  be  arranged  in 

an  order  conformable  to  the  orders  of  the  derivatives,  by  which  they 

are  brought  to  the  form  (21031),  so  that  those,  of  which  the  higher 

orders  of  derivative  are  taken,  may  precede  the  equations  of  which 

lower  orders  are  taken.  Instead  of  reducing  the  equations,  by  a 

single  step,  to  the  final  system,  the  reduction  may  be  accomplished 

by  successive  steps ;  and,  at  each  step,  the  derivatives  of  the  equa- 

tions (21027),  which  are  admitted  into  the  group  of  integrals,  may  be 

diminished  by  unity,  while  the  number  of  accents  of  the  eliminated 

variables  is  also  diminished  by  unity.  At  the  step  denoted  by  h, 

therefore,  the  derivatives  of  those  equations  (21027)  are  added  to  the 

group  of  integrals  for  which  the  orders  of  derivative  (A,)  are  greater 

than  h.  At  this  step  a  factor  ( Gh)  of  G  is  also  obtained,  and  all  the 

derivatives  of  which  it  is  composed  are  represented  by  the  functions 

(«£>),  in  which  the  superior  limit  of  Jc  is  the  same  with  that  of  i. 
Hence  if 

h  —  li+1>0, 

the  value  of  the  factor  of  G  is 
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but  if 

this  factor  is 

The  logarithm  of  the  complete  value  of  G  is,  therefore, 

PRINCIPLE    OF    THE    LAST    MULTIPLIER. 

428.  The  consideration  of  the  case  in  which  there  are  two 

variables,  leads  to  a  valuable  principle  of  integration,  discovered  by 

Jacobi,  and  which  he  called  the  principle  of  the  last  multiplier.  In  the 

case  of  two  variables,  the  equation  (2152)  becomes 

^  {XDJ+  XXDXJ)  ==  DJDXJX  —  D^fDJ,, 

which  gives 

Dxfx=^Jk>X 

BXif1  =  —  ̂ MX1. 

Hence  it  is  obvious  that 

Dfx  =  ̂ fc  {XDx  —  X,  Dxx) 

or,  by  integration, 

f1=  r^(XDz  —  X1Dz1), 

so  that  ivhen  the  multiplier  is  known,  this  equation  determines  the  integral  of 

the  tivo  differential  equations  (19912)  of  two  variables,  or  that  of  the  sin- 
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glc  equation  to  which  they  are  equivalent, 

XDxz1  —  X1  =  0, 

and  the  multiplier  is,  in  this  case,  identical  ivith  the  well-known  Eulerian 

multiplier. 

429.  When  all  the  integrals  but  one  of  a  given  system  of  differential 

equations  (19912)  are  known,  of  ivhich  the  multiplier  is  also  given,  the  last 

integral  is  determined  by  quadratures  by  the  process  of  the  preceding  section  ; 

because  the  multiplier  of  the  two  differential  equations  with  two 

variables,  to  which  the  given  system  may,  in  this  case,  be  reduced,  is 

determined  from  the  given  multiplier  by  §  418.  This  is  Jacobi's 
principle  of  the  last  multiplier. 

430.  In  the  case  of  §  380,  in  which  the  element  of  variation  (t)  is  one 

of  the  variables,  if  the  functions  ( JQ)  do  not  involve  (t),  the  equation  (2018) 

gives *=S;X 
X. 

from  which  /  can  be  determined  by  quadratures,  when  all  the  other 

integrals  of  the  given  equations  are  known,  even  if  the  multiplier  is 

not  known,  provided  thatXj  is  reduced  to  a  function  of  xi}  by  means 

of  the  known  integrals. 

If  the  multiplier  is  also  known,  and  if  it  does  not  involve  t,  the  last  of 

the  integrals  ivhich  do  not  involve  t  can  be  determined  by  the  process  of  the 

preceding  section,  and,  therefore,  the  two  last  integrals  of  the  given  equations 

can,  in  this  case,  be  determined  by  quadratures. 

Bid  if  the  given  multiplier  (ue^Md)  involves  t,  a  multiplier  (02X1(0^),  which 

does  not  involve  t,  can  be  derived  from  all  the  integrals  which  do  not  involve 

t,  and  the  quotient  of  these  two  multipliers  gives  by  §  406,  an  integral  involv- 

ing t,  and  which  takes  the  place  of  (22917) ;  so  that,  in  this  case,  the  last 

integral  is  determined  in  a  finite  form  without  integration. 
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431.  This  proposition  was  shown  by  Jacobi  to  admit  of  the 

following  generalization.  If  all  the  functions  (X{),  in  ivhich  i  is  greater 

than  m,  are  free  from  those  of  the  variables  (xt)  in  which  i  is  not  greater 

than  m,  and  if  the  remaining  functions  satisfy  the  equation 

in 

0 

tivo  integrations  can  alivays  he  performed  by  quadratures,  whenever  a  multi- 

plier is  known  ivhich  does  not  involve  the  variables  {xi<m  +  1),  but  ivhen  the 

given  multiplier  does  involve  either  of  these  variables  one  integration  can  be 

performed  by  quadratures,  and  another  integral  is  given,  immediately,  tvith- 

out  any  process  of  integration.  For  if  the  given  multiplier  oaXfc  involves 

only  the  variables  (xi>m),  it  not  only  satisfies  the  condition  (2158), 

but  also  on  account  of  the  equation  (2306) 

and  is,  therefore,  a  multiplier  of  the  portion  of  the  equations  (19912) 

in  which  i  is  greater  than  m.  This  portion  of  the  given  equations 

can,  therefore,  be  first  integrated,  independently  of  the  remainder 

of  the  system,  and  the  last  integral  of  this  portion  will  be  obtained 

by  quadratures,  because  its  multiplier  is  given.  But  the  last  inte- 

gral of  the  whole  system  may,  also,  be  obtained  by  quadratures, 

because  its  multiplier  is  known;  so  that  two  of  the  integrals  can  be 

obtained  by  quadratures. 

But  if  the  given  multiplier  involves  any  of  the  variables 

(xi<m+1),  the  separate  integration  of  that  portion  of  the  equations 

(19912)  in  which  i  is  greater  than  m,  gives  a  multiplier  of  this  portion 

involving  only  the  variables  (xi>m),  which  satisfies  the  equation (23015); 

and  by  (2306)  it  also  satisfies  the  equation  (2158),  so  that  it  is  a  new 

multiplier  of  the  given  equation.     The  quotients  of  these  two  mill- 
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tipliers  gives,  by  §406,  an  integral  involving  (.r!<H,+1),and  which  takes 

the  place  of  the  first  of  the  two  integrals,  which  are  obtained  by  quad- 

ratures when  the  given  multiplier  involves  only  the  variables  [xi>m). 

PARTIAL     MULTIPLIERS. 

432.  Additional  to  the  systems  of  Eulerian  and  Jacobian  mul- 

tipliers, and  inclusive  of  them,  are  those,  of  which  I  have  given  the 

investigation  in  Gould's  Astronomical  Journal,  and  which  I  have  called 
partial  multipliers.     The  partial  multipliers  of  the  differential  equations 

(19912)  are  represented  by  (\sstkiik  ̂     ^J,  in  which  i,l\,/i2, . . .  etc. 

are  any  different  numbers,  or  by  (^eX(b/k),  in  which  1  and  K  denote 

groups  of  numbers ;   and  they  are  defined  by  the  equation 

P ua%  =  S ± DXk  fxD   ft   D    fm 

in  which  P  is  any  arbitrary  function,  Je1:  k2  •  •  •  %m  are  numbers  not 

included  in  the  groups  I,  and  /i,/2,  etc.  are  solutions  of  the  equa- 

tion (2002).  The  notation  (<J5vt(c(A))  may  also  be  used  to  denote  the 
multiplier,  with  the  definition  that  if 

iT  denotes  the  group  of  numbers  represented  by  (7em). 

433.  The  system  of  multipliers  of  (19912),  evidently,  satisfies 

the  system  of  differential  equations,  which  are  derived  from  (18710), 

and  represented  by 

in  which  i  includes  all  the  numbers  not  belonging  to  the  group  I. 

434.  The  group  of  all  the  numbers  not  included  in  the  group 
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(I)  with  the  exception  of  any  two,  which  may  be  selected  at  pleas- 

ure, may  be  denoted  by  II.  The  elimination  of  the  corresponding 

values  of  Xh  from  the  equations,  obtained  from  (2002)  by  the  substi- 

tution of  the  various  values  of  (/;)  gives  the  equations,  which  are 

represented  by 

2k(<mMs(H^Xk)  =  0. 

This  system  of  equations  combined  with  that  of  (23128)  defines, 

analytically,  the  system  of  partial  multipliers. 

435.  In  the  formation  of  the  multipliers,  a  careful  regard  must 

be  had  to  their  signs,  conformably  to  the  rule  of  formation  of  deter- 

minants, so  that  in  general 

436.  In  the  special  case,  in  which  the  group  (i,  I)  of  §  433 

is  reduced  to  a  single  number,  and  in  which  P  is  X,  the  preceding 

equations  become 

XwMsi  =  —  ok{, 

—  X^fki  -f-  X.^  =  0, 

0  =  J£t  DXi  (Xuafc,)  =  2{DXt  (^MoXJ ; 

so  that,  the  multiplier  is,  in  this  case,  the  Jacobian  multiplier. 

437.  In  the  case,  in  which  the  groups  (i,  I)  of  §  433  include 

the  numbers  of  all  the  variables  but  one,  and  in  which  P  is  unity, 

the  equations  become 
^k{i)  =  DXifi, 

so  that,  the  system  of  multipliers  is,  in  this  case,  that  of  the  Eulerian  multi- 

pliers amplified  by  Lagrange. 
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438.  The  partial  multipliers  may  be  denoted  as  the  first,  second, 

etc.,  to  the  last  corresponding  to  the  degree  of  the  determinant  which 

is  the  second  member  of  the  equation  (216n).  With  this  designa- 

tion, the  last  multiplier  coincides  with  the  Jacobian  multiplier  and 

gives  a  last  integral  of  the  differential  equations,  while  the  first  mul- 

tipliers coincide  with  the  Eulerian,  of  which  each  system  gives  a 

first  integral  of  those  equations.  This  proposition  may  be  general- 

ized, and  it  may  be  shown  that  each  system  of  multipliers  determines 

an  integral  of  the  given  equations  hy  means  of  quadratures,  and  holds  a  place 

in  the  rank  of  multipliers  similar  to  that  held  hy  the  integral,  in  the  rank  of 

integrals. 

The  investigation  of  the  relations  of  the  multipliers  of  differ- 

ent systems  will  be  found  to  lead  immediately  to  this  proposition, 

after  its  truth  has  been  established  in  the  case  of  the  Eulerian  mul- 

tipliers. 

439.  The  deduction  of  an  integral  of  a  system  of  differential 

equations  (19912),  by  means  of  quadratures,  from  a  given  system  of 

Eulerian  multipliers,  is  quite  a  simple  process.  For  the  definition  of 

these  multipliers  in  §  437  gives 

If  the  quantities  represented  by  ( #»)  are  defined  by  the  equa- 
tion 

Qi=  C{^k(i)  —  D^hQk), 
J  x  l   0 i 

the  required  integral  is 

f=2iQi  =  a: 

For  the  defining  equation  of  Qt  gives 

DxZk  Qk  =  ̂ >. 

1   0 

30 
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Hence  it  is  found  by  differentiation  that  ( Q{)  is  free  from  all 

the  variables  (xk<i),  for  if  this  is  supposed  to  be  proved  for  ( Qk<i)  it 

it  seen,  by  (23227),  that 

i  — 1  h 

DXDX  Qt  =  D   {^k{i)  —  DxZk  Qk)  =  D   yaHP  —  D^D-Su  Qk hi  h  v  *     0  0 

=  DXk  ̂fe(i)  —  Dx.  ̂ kw  =  0 . 

The  differential  of  (23327)  is,  therefore, 

Df=  St  {Dxkk  QkDXi)  =Zi(^Dxl), o 

which  corresponds  to  the  required  differential  (23319). 

440.  When  the  differential  equations  (19932)  are  transformed 

to  other  variables  in  the  manner  which  is  indicated  in  §  413,  any 

multiplier  of  the  new  system  is  obtained  by  the  following  formula 

which  corresponds  to  (23115), 

P'$tH=2±DWt  AD    f2   D     fm. 

If,  then,  the  functions  ( G)  are  defined  by  the  equation 

G^  =  2±DvlxiDwx,   D     *, 

=  (2±  Dx  whDx.  iv h%   Dx.  ̂ J-1, 

the  proposition  (18620)  gives  by  (23115) 

P'dfH=I>ZI(  oa%  £<*>) . 

441.  If  any  of  the  solutions  (/j-)  of  (2002)  are  known,  they 
can  be  assumed  as  new  variables  to  take  the  place  of  either  of  the 

given  variables,   and  the  new  multipliers  must  be  determined  by 
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the  preceding  equation.  But  it  is  evident  that,  in  this  case,  the 

number  of  elements  which  compose  each  of  the  terms  of  (cNh) 

will  be  diminished  by  a  number  equal  to  that  of  the  solutions,  which 

are  introduced  as  variables.  Hence  since  m  is  the  number  of  ele- 

ments which  compose  each  term  of  ( *J2X(c7),  if  (m  —  1)  is  that  of  the 

known  solutions,  the  number  of  elements  of  {g^h)  may  he  reduced 

to  one,  in  which  case  the  multipliers  (cNH)  become  Eulerian  and 

give  the  mth  solution  of  (2002)  or  the  mth.  integral  of  (19912),  by 

means  of  quadratures,  which  corresponds  to  the  proposition  of  §438. 

III. 

INTEGRALS    OF    THE   DIFFERENTIAL   EQUATIONS    OF   MOTION. 

442.  When  the  differential  equations  of  motion  are  expressed 

in  their  utmost  generality,  there  is  no  known  integral  which  is  suf- 

ficiently comprehensive  to  embrace  them.  But  the  equation  (16314) 

of  living  forces  is  an  integral,  which  is  applicable  to  all  the  great 

problems  of  physics,  and  holds  the  most  important  position  in  refer- 

ence to  investigations  into  the  phenomena  of  the  material  world. 

There  are  other  integrals  of  great  generality,  which  might  be  inves- 

tigated in  this  place,  if  the}^  were  not  clothed  with  such  a  character 

of  speciality,  that  they  properly  belong  to  some  of  the  following 

chapters.  The  application  of  Jacobi's  principle  of  the  last  multi- 
plier to  dynamic  equations  gives  results  of  so  general  a  character, 

that  their  investigation  cannot  appropriately  be  reserved  for  any 

chapter  devoted  to  the  consideration  of  special  problems. 
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the   application    op   jacobi  s   principle    of   the   last   multiplier   to 

lagrange's  canonical  forms. 

443.  It  follows  from  the  homogeneous  nature  of  T  (16510), 

that  each  of  Lagrange's  equations  (164]2),  involves  one  or  more  of 

the  quantities  represented  by  (?/'),  and  the  system  of  these  equa- 
tions has,  therefore,  the  form  represented  by  (21030).  If,  then,  (a^°) 

denotes  the  coefficient  of  {rfk)  in  the  value  of  (wt),  given  by  (1655), 
this  value  becomes 

o»i.=  -2*(4i)^I), 

and  that  of  T  is  by  (165u) 

so  that  the  functions  (a[l))  only  involve  the  quantities  represented  by 
(rj)  and  the  time  \t),  and  satisfy  the  equations 

4:4:4:.  Each  of  Lagrange's  equations  may  be  expressed  in  the 
form 

g>,  =  Dt2k{afrfk)  —  i2A>k(Dv  tf%ffh)  —  Z>,  i2  =  0. i  i 

Hence,  when  £2  is  only  a  function  of  (■)},)  and  t,  the  equa- 
tions (22410)  become 

k 

D^fi  =  <Mf)  =  A«i°  +  Zh{Dv  afrfh  —  Dv  tf%) ; 
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from  which  are  easily  derived  the  equations 

k  i 

k  i 

The  notation 

(i,Jc)  =  Z^Drfffc  —  D,<Wrfk), k  i 

gives 

ft*)  =  —  (*>*)» 

In  the  substitution  of  these  values  in  (22431),  it  is  evident  from 

(18018),  (18031),  and  (1816)  that  the  functions  (i,k)  disappear,  and 

since  D  takes  the  place  of  Dt,  (22431)  becomes 

D  log  vje^Md  =  D  log  %>ni 

and,  therefore,  since  the  arbitrary  constant  may  be  neglected, 

which  holds,  even  if  the  equations  of  condition  involve  the  time. 

In  all  dynamical  'problems,  therefore,  in  ivhich  the  forces  arc  indepen- 
dent of  the  velocities  of  the  moving  bodies,  a  Jacobian  multiplier  is  given 

directly  by  the  equation  (237i9),  so  that  th&  fast  integral  can  alivays  be 

obtained  by  quadratures. 

445.  Hence,  by  §  430,  in  any  dynamical  problem,  in  ivhich  the 

forces  and  equations  of  condition  are  independent  of  the  time  as  ivell  as  of 

the  velocities  of  the  bodies,  the  two  last  integrals  can  be  obtained  by  quad- 
ratures. 

446.  The  substitution  of 

Ui^=xi\Jmi,lZi+x=yi\Jmi,l3i  +  i=izislmi, 
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in  (16420)  and  (16228)  gives 

2  2 

mvt  =  Ui  +  Z*i+i-\-Z'Si+2 

Hence  if 

2 

* 

the  value  of  w^  is  by  (236l5), 

which,  combined  with  §  §  346  and  348,  gives 

sS>No  =  <&n  =  2M(W*)) 

in  which  (3i'lM)  denotes  the  functional  determinant  of  a  group  (M)  of 

(11  -j-  1)  of  the  functions  (£;)  relatively  to  the  variables  (17,).  It  may 
be  observed  that  if  %  is  the  number  of  bodies  of  the  system,  and  n2 

the  number  of  conditional  equations,  the  value  of  n  is 

n  =  3  ??!  —  n2  —  1 . 

447.     If  the  conditional  equations  are  represented  by 
77=0, 

and  if 

their  derivatives  with  reference  to  (i;£)  are  represented  by 

^(W.)==0. 

If  then  (JjT)  denotes  any  group  of  n  of  the  quantities  (£,),  and 
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(II,h)  denotes  a  group  of  n-\-  1  of  the  same  quantities  in  which  the 

group  (H)  is  included,  the  preceding  equations  give,  by  elimination, 
between  all  those  in  which  i  remains  unchanged, 

"ov 

Since  then  the  group  (ff,h)  is  also  denoted  by  (o&((d),  if  the 

group  of  all  the  remaining  quantities  (£f)  is  denoted  by  {N),  if  M' 

and  N'  are  other  groups  of  the  same  species,  and  if  ( Q[N))  denotes 
the  determinant  of  the  corresponding  values  of  (c^),  the  preceding 

equations  give,  by  elimination, 

which,  it  is  easily  seen,  may  be  extended  to  the  case  of  any  groups 

whatever  (M  and  Mt),  in  which  each  includes  (w  -J-  1)  of  the  quan- 

tities {%{).  If,  therefore,  some  one  group  is  arbitrarily  selected  and 

denoted  by  (M0),  the  equation  (23813)  becomes 

-*  =  («S)^ani. 

448.     If  the  derivatives  of  (rji)  relatively  to  (5,-)  are  denoted  by 

and  if  f€<lM)  denotes  the  determinant  of  the  values  of  (e^),  which  cor- 

respond to  those  of  (bp)  in  ty(™\  the  derivatives  of  (i;f)  may  first 
be  taken  with  respect  to  (£;),  and  if  those  of  (§;)  are  afterwards 

taken  with  respect  to  (ijt),  they  give  by  (18620) 

1  =  2  ±  DnriDn  VlDn  ih   Dn  Vn  =  2i(Q<P<qP). 
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Hence,  if  gjY  denotes  the  determinant  of  all  the  quantities  (II {) 

and  (i]i)  with  reference  to  (£,-),  the  equation  (23913)  gives 

JIH  n      J  f)to(M)        M\       n  n      J 

which,  substituted  in  (23920)  reduces  it  to 

_  zN(&N)y 

(N: 

449.  If  there  are  no  equations  of  condition,  the  value  of  \JhMd  is 
reduced  to 

=  (S-±D1ltD^1   Dnlnf i  ii 

=  (2±'D^D^ni   D^ny\ 1  n 

If  in  this  case,  therefore,  the  values  of  (i]t)  coincide  ivith  those  of  (£;), 

the  multiplier  is  reduced  to  unity. 

450.  If  the  equations  of  motion  were  given  in  the  system  of 

§  310,  in  which  the  forces,  represented  by  the  equations  of  condition, 

are  included  in  those  of  12,  this  system  might,  by  means  of  the  equa- 

tions of  condition,  be  reduced  to  that  of  Lagrange's  canonical  forms. 
In  performing  this  reduction,  the  equations  of  condition  hold  the 

same  relation  to  the  differential  equations,  which  the  equations  (21027) 

hold  to  the  equations  (21031),  in  performing  the  reduction  of  §  §  395 
and  425.     It  is  also  obvious  that 

i  i 

Hence  the  divisor  by  which  the  multiplier  of  the  first  of  these 
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systems  is  reduced  to  that  of  the  last,  is  by  (2288),  (2227),  and  the 

preceding  sections 

{2  +  DtfD^   D^hlD<      UP;      IT,   D^  nnf=^- 1  n  »  +  l  »  +  2  Sjij        2 

and,  therefore,  the  multiplier  of  the  system,  previous  to  reduction, 

is  by  (2408) 

451.  If  the  system  of  differential  equations  is  given  in  Ham- 

ilton's form,  (1663),  the  equation  (21525)  for  the  determination  of  the 
multiplier  becomes 

D log  to*  +  S{  (DnDa  —  DuDn)  IIn,u  =  D log  v*Jk  =  0, i         i  i         i 

whence  the  multiplier  of  this  system  is  unity. 

CHAPTER    XI. 

MOTION  OF  TRANSLATION. 

452.  If  the  coordinates  of  the  centre  of  gravity  of  a  system 

axe  xg,yg,  zg,  and  if  those  of  any  other  point  are  xs  -j-  xi}yg  -\-yiy 

zg  -4-  Si,  the  value  of  T  becomes,  by  (16228)  and  (16420)  and  the  con- 
ditions of  the  centre  of  gravity  (15519), 

T=  i  (x'g  +yl+z'g  )2imt+  ««[«*« +tf +  4)] 

31 
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Hence  the  motion  of  the  centre  of  gravity  is  determined  by 

the  equation,  derived  from  (16412), 

ZimiDtafg  =  2imiDitxs  =  Dxil, 

and  the  corresponding  equations  for  the  other  axes.  The  value  of 

£2  may  be  restricted  in  this  equation  to  the  external  forces  and  those 

which  correspond  to  the  external  equations  of  condition,  for  the 

internal  forces  and  equations  of  condition  being  dependent  solely 

upon  the  relative  positions  of  the  bodies  of  the  system,  are  functions 

of  the  differences  of  the  corresponding  coordinates  of  the  bodies, 

from  which  xg,yg,  zg  disappear. 

The  motion  of  the  centre  of  gravity  is,  therefore,  independent  of  the 

mutual  connections  of  the  parts  of  the  system,  and  is  the  same  as  if  all  the 

forces  ivere  applied  directly  at  this  centre,  provided  they  are  unchanged  in 
amount  and  direction. 

453.  Since  the  second  member  of(2423)  expresses  the  whole 

amount  of  forcer  acting  upon  the  system  and  resolved  in  the  direc- 

tion of  the  axis  of  x,  this  equation  expresses  that  the  motion  of  the  cen- 

tre of  gravity  in  any  direction  depends  upon  the  whole  amount  of  external 

force  acting  in  that  direction. 

If,  therefore,  the  ivhole  amount  of  external  force  acting  in  any  direc- 

tion vanishes,  the  velocity  of  the  centre  of  gravity  in  that  direction  is  uniform. 

MOTION    OF   A   POINT. 

454.  When  the  system  is  reduced  to  a  single  point,  it  becomes 

a  mass  united  at  its  centre  of  gravity,  and  the  only  possible  motion 

is  that  of  translation.  The  position  of  the  point  is  determined  by 

three  coordinates,  which,  combined  with  their  derivatives  and  with 

the  time,  constitute  a  system  of  seven  variables,  and  require,  in  gen- 

eral, six  integrals  for  the  complete  determination  of  the  motion  of 
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the  point.     The  differential  equations  become,  in  this  case,  if  the 

mass  of  the  body  is  assumed  to  be  the  unit  of  mass, 

D'1tx  =  Dxn, 

with  the  corresponding  equations  for  the  other  axes. 

A   POINT   MOVING    UrON    A   FIXED    LINE. 

455.  The  two  equations  by  which  the  line  is  defined  are  two 

equations  of  condition,  which  may  be  denoted  by 

Together  with  their  derivatives,  they  take  the  place  of  four  of 

the  integrals  of  §  454.  Of  the  two  remaining  integrals,  ivhen  £2  docs  not 

involve  the  time,  both  can  be  determined  by  quadratures  by  §  445. 

One  of  these  integrals  is,  indeed,  the  equation  of  living  forces 

(16313),  which  becomes  in  this  case 

z,2=2(J2-f  H)  =  (I)ts)2. 

The  final  integral  is  obtained  from  this  integral  by  the  equation 

t==Js  \/(2Si- 

\J  (2  Si  +  2  H) 

=  1 

Dns 

\/(2Sl  +  2II) 

456.  It  follows  from  (243ia)  that  the  velocity  of  a  body  only 

depends  upon  its  initial  velocity  and  the  value  of  the  potential  at 

each  point  of  its  path ;  and  this  conclusion  coincides  with  the  propo- 

sition of  §  58.  In  ivhatever  path,  therefore,  a  body  moves  from  one  point 

to  another,  the  increase  or  decrease  of  the  square  of  its  velocity  may  be  meas- 
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ared  by  that  of  the  potential,  when  the  equations  of  condition  and  the  forces 

zvhich  act  upon  the  system  are,  like  the  fixed  forces  of  nature,  independent  of 

the  time  and  the  velocity  of  the  body. 

457.  If  there  is  any  point  upon  the  line,  beyond  which  the 

decrease  of  the  potential  exceeds  one  half  of  the  square  of  the 

initial  velocity,  the  body  cannot  proceed  beyond  that  point.  If  there 

is,  in  each  direction  from  the  initial  position  of  the  body  upon  the  line,  a  lim- 

iting point  of  this  description,  the  motion  of  the  body  is  restricted  to  the  inter- 
vening space.  Since  the  body  can  only  have  the  direction  of  its 

motion  reversed  at  the  limiting  points  where  its  velocity  vanishes,  it 

must  oscillate  back  and  forth  upon  the  whole  of  the  intervening 

portion  of  the  line,  according  to  the  law  expressed  by  the  equation 

(24323). 

It  is  evident  from  the  inspection  of  the  equation  (24323),  that 

the  time  which  the  body  occupies  in  passing  from  any  point  (A)  of 

the  line  to  another  point  (B),  must  be  the  same  with  that  which  it 

occupied  in  the  preceding  oscillation  in  the  reverse  transit  from  the 

point  ( B)  to  the  'point  {A) ;  and,  therefore,  the  entire  duration  of  oscil- 
lation must  be  invariable. 

458.  If  the  line  returns  into  itself,  and  if  there  is  no  point 

upon  it  for  which  the  decrease  of  the  potential  is  as  great  as  the 

initial  power  of  the  body,  the  body  will  continue  to  move  through  the 

whole  circuit  of  the  line,  and  will  always  return  to  the  same  point  with  the 

same  velocity,  so  that  the  period  of  the  circuit  tvill  be  constant. 

459.  When  the  forces  and  the  equations  of  condition  involve 

the  time,  the  multiplier  becomes  by  (23813) 

<mMs  =  2x(I)vxf 

and  the  last  of  the  integrals,  zvhich  are  required  to  solve  the  problem,  can  be 

obtained  by  quadratures. 
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TIIE    MOTION    OF   A    BODY    UPON    A     LINE,    WHEN     THERE     IS     NO     EXTERNAL     FORCE. 

CENTRIFUGAL    FORCE. 

460.  When  the  line  is  fixed,  and  there  is  no  external  force,  £2  van- 

ishes in  (24319),  and  the  velocity  is,  therefore,  constant. 

461.  In  this  case,  the  line  may  be  regarded  as  the  locus  of  a 

resisting  force,  which  acts  perpendicularly  to  the  line.  The  plane  of 

x  and  y  may  be  supposed  to  be,  for  each  instant,  that  of  the  curva- 

ture of  the  line  at  the  position  of  the  body,  R  may  be  the  resisting 

force  of  the  line,  and  o  its  radius  of  curvature  ;  and  elementary  con- 

siderations, combined  with  the  equation  (16425),  give 

Dtx  =  Dts  sin  p  =  v  sin p 
X  1 

J)*x  =  vcospzDtx  =  v2cosxI)sx  =  ̂ cosx=Bcosx, 

whence 

R=-, 
Q 

so  that  the  pressure  against  the  line  is  measured  by  the  quotient  of  the 

square  of  the  velocity  divided  by  the  radius  of  curvature,  which  is  called  the 

centrifugal  force  of  the  body. 

462.  If  there  are  external  forces,  the  tvhole  pressure  upon  the  line 

is  obtained  by  combining  the  action  of  all  the  external  forces  resolved  perpen- 

dicularly to  the  line,  with  the  centrifugal  force. 

463.  The  centrifugal  force  cannot  be  used  as  a  motive  power 

in  machinery,  for  the  body  moves  perpendicularly  to  the  direc- 

tion of  this  force ;  and,  therefore,  the  power  communicated  by  it 

vanishes,  because  it  is  measured  by  the  product  of  the  intensity  of 

the  force  multiplied  by  the  space  through  which  it  acts. 

464.  If  the  line  is  not  fixed  in  position,  but  has  a  motion  of 
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translation,  the  same  motion  of  translation  may  be  attributed  to  the 

axes  of  coordinates,  so  that  the  coordinates  of  the  moving  origin  at 

any  time  may  be  ax,  ay,  az,  with  reference  to  the  fixed  axes.  If  the 

coordinates  of  the  body  with  reference  to  the  moving  axes  are  %x)%y, 

\z,  the  value  of  2  T  (16421)  becomes 

2T=Zx(¥x  +  a'xy 

=  Dts2  -\-  2  wDts  cos  *  -f-  u?, 
2 

=  s'  -j-  2  IV §'  COS  *  -j-  2V2 

if  iv  denotes  the  velocity  of  the  motion  of  the  origin,  and  s  the 

length  of  the  line  passed  over  by  the  body.  Hence  Lagrange's 
equation  (16412)  gives 

Dt  (/  -J-  iv  cos  * )  =  Ds  (/  w  cos  £)  =  s'wDs  cos  £ . 

But,  since  the  angles  which  s  makes  with  the  axes  are  inde- 

pendent of  the  time,  the  derivative  is 

Dt  O  cos  i ) •=  Dt  2X  {wx  cos  • )  =  2X  (wx  cos  x  -\-  /  wx  Ds  cos  %) 

=  2x(w'xcosx)-\-s' Ds  (to  cos  ̂ ), 

which  reduces  the  preceding  equation  to 

Dts  =  —  2X  (w'x  cos  sx)=  —  Wcos  £, 
if 

2  2  2 

W=     \j(Wx     -\-W'y-\-Wz) 

denotes  the  acceleration  of  the  line  at  each  instant.  Hence  it  is 

easy  to  see  that  if  the  acceleration  is  perpendicular  to  the  line,  the  relative 

velocity  of  the  body  to  the  line  is  not  changed  ;  but  if  the  acceleration  is  in 

the  direction  of  the  line,  the  change  of  relative  velocity  is  exactly  equal  to  the 
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acceleration,  so  that  there  is,  in  this  case,  no  change  in  the  actual  velocity  of 

the  bod//  in  space. 

465.  It  follows,  from  the  preceding  investigation,  that  if  the 

motion  of  the  line  is  uniform,  the  relative  velocity  of  the  body  and  the  line 
remains  constant. 

466.  It  is  also  apparent  from  this  investigation  that  even  under 

the  action  of  external  forces,  the  relative  motion  of  the  body  to  the  line  may 

be  computed,  by  regarding  the  acceleration  of  the  line  as  a  force  acting  upon 

the  body  in  a  direction  opposite  to  its  actual  direction. 

467.  If  the  line  rotates  about  a  fixed  axis,  which  is  assumed  to 

be  the  axis  of  z,  let 

u  be  the  projection  of  the  radius  vector  upon  the  plane  of  xy, 

(p  the  angle  which  u  makes  with  the  rotating  axis  of  x,  and 

a  the  velocity  of  rotation, 

and  the  value  of  2  T  becomes 

2T=/-\-  /+u2(<p'+a)2 

=  (Bts)2-\-2u2(p'a-\-u2a2 2 

=  /-J-  2uasr  cos£  -\-u2a2, 

in  which  6  is  the  angle,  which  s  makes  with  the  elementary  arc  udcp. 
Hence  the  derivatives  of  T  are 

Ds  T=s'  -\-  ua  cos  £ , 

Ds  T=  / Ds(ua  cos  6)  -(-  «2m  cos  "  ; 

and  the  equation  (16412)  becomes 

D2s  =  —  u  cos  &  a  -\-  a2u  cos  ". 

The  former  of  the  two  terms  which  compose  the  second  mem- 
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ber  of  this  equation,  is  the  negative  of  the  acceleration  of  the  rota- 

tive velocity  resolved  in  the  direction  of  the  arc  of  the  rotating  line. 

The  latter  term  represents  the  centrifugal  force,  which  corresponds 

at  the  body  to  the  rotation  («),  and  which  is  also  resolved  in  the 

direction  of  the  moving  arc.  But  the  centrifugal  force  is  purely 

relative  in  its  character,  and  arises  from  the  resistance  of  the  body 

to  accompany  the  curve  in  its  change  of  motion  occasioned  by  rota- 
tion. These  terms  combined  show,  then,  that  in  this  case,  as  well  as 

in  that  of  translation,  and,  consequently,  in  every  case  the  relative 

motion  of  the  body  to  the  line  may  he  obtained  by  attributing  to  the  body  the 

negative  of  the  acceleration  of  the  line,  which  occurs  at  the  position  of  the 

body ;  in  the  case  of  external  forces,  their  action  must  be  united  to  that 

ivhich  arises  from  the  acceleration  of  the  line. 

468.  In  the  case  of  an  uniform  rotation  about  a  fixed  axis,  the 

equation  (24729)  becomes 

D2s  —  a2u  cos  "  =  a2 uD,u. 

The  integral  of  the  product  of  this  equation,  multiplied  by 

2Dts,  is 

(Dtsf=a2(u2-\-A), 

in  which  A  is  an  arbitrary  constant.     Hence  it  is  obvious  that 

.  _  r     i      _  r    dus 

469.  When  the  constant  (A)  is  negative,  the  value  of  u  cannot 

be  less  than  \j  —  A  ;  so  that  when  the  body  approaches  the  axis,  its 

velocity  upon  the  line  is  constantly  retarded,  and  vanishes,  when  its 

distance  from  the  axis  is  reduced  to  \/ — A,  after  which  the  direction  of 

the  motion  is  reversed.  If  the  portion  of  the  line,  upon  which  the 

body  moves,  extends  at  each  extremity,  so  as  to  be  at  as  small  a  dis- 
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tance  as  y/  —  A  from  the  axis,  the  body  tvill  oscillate  upon  it  ivith  a  con- 

stant period  of  oscillation. 

470.  When  the  constant  (A)  is  positive,  or  when  it  is  negative, 

and  no  portion  of  the  line  in  the  direction,  towards  which  the  body 

is  moving,  is  at  so  small  a  distance  as  \J  —  A  from  the  axis,  the 

motion  of  the  body  upon  the  line  will  constantly  retain  the  same 

direction.  If,  moreover,  the  curve  returns  into  itself,  the  body  will 

always  continue  to  move  around  it,  with  a  constant  period  of  revolution. 

471.  When  the  constant  (A)  vanishes,  the  equation  (24820) 

gives 

at 
Dts  =  au 

Jsu         Ju     it     ■ 

If  the  curve,  also,  passes  through  the  axis  of  rotation,  the  value 

of  Dus  may  be  supposed  to  be  constant,  while  the  body  is  very  near 

the  axis,  and  may  be  represented  by  /?  ;  so  that  the  motion  of  the 

body  in  the  vicinity  of  the  axis  is  given  by  the  equation 

a#=  (i  log  u. 

The  second  member  of  this  equation  becomes  infinite  when  u 

vanishes,  and,  therefore,  the  motion  of  the  body,  in  this  case,  is  infinitely 

sloio  in  the  immediate  vicinity  of  the  axis. 

472.     When  the  rotating  line  is  straigJd,  let 

p  be  the  distance  of  its  nearest  approach  to  the  axis  of  rotation,  and 

£  the  angle  which  it  makes  with  the  plane  of  x  y. 

If  then  s  is  counted  from  the  foot  of  the  perpendicular,  which 

joins  the  nearest  points  of  the  line  and  the  axis  of  revolution,  the 

32 
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value  of  u2  is  given  by  the  equation 

U2=p2  -\-S2CO$2A  ; 

whence  (24824)  becomes,  in  this  case, 

at  ~  J  \/  (p2+A+s>  cos2  d) 

=  jko  lQg  & cos *  +  v/(/+^+^2cos2^)]  - log{2PlteA)  m> 

in  which  the  arbitrary  constant  is  determined  so  that  t  may  vanish 

with  s,  and  this  equation  is  applicable  when  (p2  -|-  A)  is  positive. 
In  this  case,  the  substitution  of  the  notation 

h%  =f  4-  A, 

tan  re  =   -, 

reduces  the  preceding  equation  to 

a  t  cos  &  =  log  cot  I  <p . 

But  when  (p2  -j-  il)  is  negative,  the  substitution  of  the  notation 

k2  =  -(p2  +  A), 

h 
sin  if  =   s, 

T         s  cos  0 7 

and  the  determination  of  the  arbitrary  constant,  so  that  t  may  vanish 

when  s  has  its  least  possible  value  of  Jc  sec  6,  reduce  the  equation 

(2506)  to 

a  t  cos  6  =  log  tan  h  if . 
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When  (p2  -J-  A)  vanishes,  the  equation  (250^)  is  reduced  to 

a i  cos  6  =  log  — ; 

So 

in  which  s0  is  the  initial  value  of  s.  When  p  also  vanishes,  the  sur- 

face described  by  the  line  is  a  right  cone,  and  when  it  is  developed 

into  a  plane,  the  path,  described  by  the  body,  becomes  a  logarithmic  spiral. 

473.     When  the  rotating  line  is  the  circumference  of  a  circle  which 

is  situated  in  the  plane  of  rotation,  let 

E  denote  the  radius  of  the  circle, 

a  the  distance  of  the  centre  of  the  circle  from  the  origin, 

2  (p  the  angle,  which  the  radius  of  the  circle,  drawn  to  the  body, 

makes  with  that  which  is  drawn  in  a  direction  opposite  to 
the  origin, 

and  the  equation  (24824)  becomes 

,       r  2E 
at  =   I Jib 

When  A-\-(R  —  a)2  is  positive,  which  corresponds  to  the  case  of 

§  470,  let 

h2  =  A-{-(B-\-a)2, 

sin2  i 
Kxl  -]-  u>2

 
4aE 
V 

and  by  the  notation  of  elliptic  integrals  of  §  169,  the  equation  (25118) 
becomes 

at  =  -£■&&. 

When  i  is  so  small  that  its  fourth  power  may  be  rejected,  this 
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equation  gives,  by  an  easy  reduction, 

at=  (1  -f-  i  sin2/)— ~  —  —  sin2mn2<jp. 

In  this  case,  therefore,  the  time  of  describing  the  semicircum- 

ference,  for  which  2  y  is  greater  than  a  quadrant,  exceeds  the  time 

of  describing  that  for  which  2  y  is  less  than  a  quadrant  by 

R   .   o.        iafi2  iaE2 T-snrV 

When  J. -|- (it  —  a)2  is  negative,  which  corresponds  to  the  case 
of§4G9,  let 

•  2-        & 

sin- 1 

4afi: 

•      .         sin  w 

sm  6  =  —r-h sim 

and  the  equation  (251]8)  becomes 

2E    C         .         2Rsini    C 
at  =  —r-  J  sec  6  =  — -, —  /  sec  9 

When  i  is  so  small  that  its  square  may  be  rejected,  the  duration 
of  an  oscillation  becomes 

a  \    a 

When  the  circumference  passes  through  the  axis  of  rotation,  a 

is  equal  to  R,  and  the  time  of  the  small  oscillation  becomes  identical 

with  that  of  the  semi-revolution  of  the  circle ;  but  the  time  of  a 

larger  oscillation  exceeds  that  of  the  semi-revolution. 
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When  A-\-  (R —  a)2  vanishes,  the  equation  (251]8)  becomes 

at  =  y-J  seccJp  =  ̂ /-logtan(i  n  +  ky). 

When  A-\-(R —  af  is  very  small,  and  its  ratio  to  iaR  is 
denoted  by  d  A,  the  equation  (25118)  gives  throughout  the  greater 

portion  of  the  path,  in  which  <p  differs  sensibly  from  i  n,  that  is,  in 

which  the  body  is  not  near  its  point  of  closest  approach  to  the  axis 

of  rotation,  so  that  the  square  of  dA  may  be  neglected, 

=  (1  —  Id  A)  i/— log  tan  {in-\-  £(p)- — id  Ay/—  tan  9  secy. 

But  in  the  vicinity  of  the  point  of  nearest  approach,  let 

XfJ  =  i  7T    (p 

be  so  small  that  its  square  is  of  the  same  order  with  $.4,  and  the 

equation  (25118)  gives 

at  = — U-  I  =  —  i/-Sin[~1]  -=,  when  d  A  is  positive. 

=  — 1/—  Cos[~1]  ,-  •     .. ,  when  dA  is  negative. 
V    a  \f  ( —  8  A) '  ° 

474.  When  the  rotating  line  is  ivholly  contained  upon  the  surface  of  a 

cylinder  of  revolution  of  which  the  axis  is  the  axis  of  revolution,  u  is  con- 

stant and  the  equation  (24729)  becomes 

D(psD2s  =  —  u2a? , 

from  which  (p  or  s  may  be  eliminated  by  the  given  equation  of  the 
curve. 
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475.  When  the  velocity  of  rotation  is  constant,  the  second 

member  of  (25328)  vanishes,  and  the  velocity  of  the  body  is  conse- 

quently uniform. 

476.  When  the  curve  is  a  helix,  the  value  ofZ>.s  is  constant, 

and  the  equation  (25329)  gives 

M2
 

in  which  A  is  an  arbitrary  constant. 

477.'  When  the  acceleration  is  uniform,  a'  is  constant,  and  the 
integral  of  (25328)  gives 

(Dtsf  =  u2a(A  —  <p), 
u2a't=    I  -jj-.    ; 

JsS/(A—(p)> in  which  A  is  an  arbitrary  constant. 

MOTION    OF   A   HEAVY   BODY   UI"ON   A    FIXED    LINE.      THE    SIMPLE   PENDULUM. 

478.  When  the  line  is  fixed,  and  the  force  which  acts  upon 

the  body  is  that  of  gravity  at  the  surface  of  the  earth,  represented 

by  g,  and  the  axis  of  z  is  assumed  to  be  the  vertical,  directed  down- 
wards, the  equations  (24319_32)  give 

v2=2gz-\-2H, 

t—c      y  r     ̂ s 
Js^(2gz-\-2ff)  —JzS/(2ffz-\-2Jiy 

479.  If  the  curve  is  contained  upon  the  surface  of  a  cylinder 

of  which  the  axis  is  vertical,  the  motion  of  the  body  is  the  same  as 
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it  would  be  upon  the  plane  curve,  obtained  by  the  development  of 

the  cylinder  into  a  vertical  plane ;  because  the  value  of  Dzs  is  not 

changed  by  this  development. 

480.  If  the  fixed  line  is  straight,  the  equation  (2542S)  becomes 

if  ̂'0  is  the  initial  velocity  of  the  body. 
481.  If  there  is  no  initial  velocity,  the  preceding  equations 

become 

cos  *  gt  =  ̂ {2gs  cos*)  =  v, 
or 

z       gt       g?      2 gs      s ' 

482.  If  the  curve  is  the  circumference  of  a  circle,  the  centre 

of  the  circle  may  be  assumed  as  the  origin  of  coordinates.  If  then 

the  axis  of  zx  is  the  intersection  of  the  plane  of  the  circle  with 

the  vertical  plane,  which  is  drawn  perpendicular  to  it  through  the 

origin,  and  if  R  is  the  radius  of  the  circle,  and 

the  equation  (25428)  becomes 

2R r   2R.     r   

,?V/(23^cos^cos29  +  2#)        J^sJ  (2  H-j-2  g  H  cos*  —  4  g  E  cos  %  sin2  cp) 

If  then  H  is  greater  than  g  Rcos^,  which  is  similar  to  the  case 

of  §  470,  let 

h2=2H+2gRcoszZi, 

4^  R  cos  I  =  h2  sin2/ ; 
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and  the  preceding  equation  becomes 

4  2RCt 

When  i  is  quite  small,  this  equation  admits  the  same  reduction 

with  that  given  (25131 — 2523). 
If  H  is  smaller  than  gR  cos  l1}  which  is  similar  to  the  case  of  §469, 

let 

h2  =  4(/Bcoszz  sin2  i 
.     ,         sin  m 

Sin  8  =  -r— ■r- , sin  i 

and  the  equation  (25524),  becomes,  by  the  same  reduction  with  that 
given  in  (25217), 

^vyy^, 

<9 

which  when  i  is  small  gives  for  the  time  of  oscillation  of  the  simple  pen- 
dulum in  an  oblique  plane 

If  H  is  just  equal  to^ijlcos*,  the  equation  (25524)  becomes 

*  =  V /(7^)1°stan^7T  +  *»)■ 

The  case  in  which  H  differs  but  little  from  gBcos^,  may  be 

subjected  to  the  same  treatment  with  that  adopted  in  (2555_23). 
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MOTION    OF   A   HEAVY   BODY   UPON   A   MOVING   LINE. 

483.  If  the  heavy  body  moves  upon  a  line,  which  has  a 

motion  of  translation  in  space,  the  equation  of  motion  becomes,  by 

the  form  of  argument  and  notation  adopted  in  §  464, 

]y\s  =  —  J7cos* -}-#,cos^ 

484.  If  the  motion  of  the  line  is  uniformly  accelerated  and 

invariable  in  direction,  the  motion  of  the  body  upon  the  line  is  the 

same  which  it  would  be  if  the  line  were  fixed,  and  the  force  a  con- 
stant force  which  coincided  in  amount  and  direction  with  the  re- 

sultant of  g  and  —  W.  Thus  if  the  line  moves  vertically  downwards 
with  an  accelerated  velocity,  equal  to  that  of  a  heavy  falling  body, 

the  body  moves  upon  the  line  with  an  uniform  velocity. 

485.  If  the  line  is  straight,  and  if  the  motion  of  translation 

follows  a  law,  dependent  exclusively  upon  the  time,  so  that  if 

At  denotes  the  law,  by  which  the  line  moves  in  the  direction 

of  its  length,  the  acceleration  in  the  direction  of  the  line  is 

—  Wcos^=D2tAr, 

and  the  value  of  s  becomes 

s  =  a  -j-  It  -J-  a  gft  cos  *  -|-  At , 

in  which  a  and  b  are  arbitrary  constants.  The  absolute  motion  of 

the  point  in  any  direction  in  space,  as  that  of  the  axis  oixx,  is  repre- 
sented by  the  equation 

x1  =(s  —  A,)  cos  sXi-\-p  cos  px{, 
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in  which  p  denotes  the  perpendicular  upon  the  line  from  the  origin. 

If  the  line  is  vertical,  and  limited  in  its  motion  to  the  vertical  plane 

of  xx  zu  and  if  the  axis  of  %  is  vertical,  the  equations  which  deter- 
mine the  position  of  the  point  in  space  are 

gx  =  a  -f-  It  -f-  igt2. 

When  p  increases  uniformly  so  that  p  is  constant,  these  equa- 
tions give 

xx—p't, 
s1  =  a  -J-  —,xx  -j-  g— 7a  xn 

so  that  the  path  of  the  body  in  space  is  a  parabola,  of  which  the 
axis  is  vertical. 

486.     If  the  line  moves  with   an  uniform  motion  in  a  straight  line, 

the  equation  (2578)  gives 

D2ts  =  g  cos*. 

The  integral  of  the  product  if  this  equation  multiplied  by  2  Dts  is 

(I)tsy=f2gcoslDts  =  2(/ftI)ts  =  2</z-{-a, 

in  which  a  is  an  arbitrary  constant.     Hence  if 

V  denotes  the  velocity  of  the  translation  of  the  line, 

the  square  of  the  velocity  of  the  point  in  space  is 

(n[SlY=W(2gz-\-a)-Vcos:Y  +  (Vsm:f 

=  2$z-\-a-\-V2—  2Vcos^S/(2gz-ira). 

The  augmentation  of  the  power  of  the  moving  body  above  its 
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initial  power  is,  then, 

P=i(DtSlf—  k{Dts°Y=g{z—  s0)—  V{vco$vs  —  v°co$vso). 

If  the  body  had  moved  through  the  same  path  upon  a  fixed 

curve,  the  increase  of  power  would  have  been 

Q=g{z  —  zo)-\-gVtcosrz. 

If  P  is  greater  than  Q,  the  excess  of  P  above  Q  is  the  power 

acquired  by  the  body  from  the  accelerating  motion  of  the  line.  But 

if  Q  exceeds  P,  the  excess  of  Q  above  P  is  the  power  communi- 

cated by  the  body  to  the  line,  which  involves  the  theory  of  many 

machines,  of  which  heavy  bodies  are  the  moving  forces.  If,  for  ex- 

ample, the  line  moves  horizontally,  the  power  communicated  by  the 

weight  is lo' 

Q  —  P=zV(vcos*—  y°cosTo). 

If,  moreover,  the  initial  velocity  of  the  body,  relatively  to  the 

line,  vanishes,  the  expression  of  the  communicated  power  is  re- 
duced to 

e_P=Fcos^[2<K2-<)]; 

and  when  the  direction  of  the  line  at  its  extremity  coincides  with 

that  of  its  translation,  this  expression  is  still  further  reduced  to 

487.  If  the  line  is  the  circumference  of  a  vertical  circle,  of  which 

the  radius  is  R,  and  if  (p  is  the  angular  distance  of  the  body  from 

the  lowest  point  of  the  circumference,  the  equation  of  motion  (2578) 
becomes 

RB^y  = —  Wcosw — #sin  (p. 
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When  the  motion  of  the  line  is   in  a  vertical   direction  this 

equation  becomes 

B&*(p  =  —(  W+g)  sin  9  ; 

which,  when  q>  is  very  small,  is  reduced  to 

RD*y  =  -{W-\-g)<9, 

The  integral  of  this  equation  is 

(p  =  Asm(tSJ^-{-b)i 

in  which  A  and  b  may  be  determined  by  the  equations 

2>J(gR)I)t\ogA=-Wsm2(t)j!L+b), 

2^{gR)Dtb  =  WA[l—  ***(f\J  £  +  *)]; 

which  give 

sl{gR)Dt{Asmb)  =  —  AW&m(tsJ  ̂ -\-h)$m(tJ  ̂  

=  hA  Tr[cos(2^t/|4-  b)  —  cos b] 

=A  W[sm2 \b— sin2(if */|  -f  hb\  ; 

s/(gR)Dt(Aco8b)  =  —  AWsm(iJ  ̂ -\-b)cos(t^^) 

=  —iAw[s[n(2tJ^-j-b)-\-smb]; 

when  TT  is  very  small  in  comparison  with  #,  J.  and  B  may  be  as- 
sumed to  be  constant  in  the  first  integration  of  the  second  members 

of  these  equations. 

When  W  is  dependent  upon  the  position  of  the  body  in  such 
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a  way,  that,  if  ̂   is  a  function  of  time, 

the  preceding  equations  give 

y/teB)Afab  =  —ft(Van(t}Jl)), 

If,  for  example, 
2T=  2hsmmt ; 

these  integrals  become 

•    m2Ji—g 

^(2B)AcoSb  =—^^sm(mt  +  tS/-£)  —  _A^gin(m*  — <y/|) 

in  which  the  arbitrary  constants  are  determined  so  that  J.  and  b 
vanish  with  the  time. 

488.  If  the  line  rotates  about  the  vertical  axis  of  s,  the  equation 

of  motion  becomes,  by  the  analysis  and  notation  of  §  467, 

J}fs  =  —  UQOs&a'  -j-«2wcos"-|-ycos* 

=  —  ucos&a  -J-  a2 n D su -4- g  D,z. 

489.  When   the   rotation   about   the   vertical  axis  is   uniform,  this 

equation  becomes 

D2  s  =  a2uDsu  -\-gDsz. 

The   integral  of  the  product  of  this  equation   multiplied  by 
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2Dts  is 

in  which  a  is  an  arbitrary  constant. 

490.  When  the  rotating  line  is  straight  and  passes  at  a  distance 

p  from  the  axis,  if  s  is  counted  from  the  foot  of  the  perpendicular 

(p)  upon  the  line,  the  equation  becomes 

(Dts)2  =  aV  sin2*  -]-  2gs  cos£  -f"  ftV2  "f" a 

=  (a  s  sin  %  -j-  -  cot'j  -J-  a  -J-  a2/?2 — (-cot*j  , 

of  which  the  integral  is  easily  found  to  be 

at  sin  *  =  log(a2ssin2*-}~  2g  cos*-|-2a  sin  $zDts)  -\-b, 

in  which  b  is  an  arbitrary  constant. 

491.  The  integral,  in  this  case,  can  be  just  as  readily  obtained 

from  the  equation  (26129)  which  becomes  a  linear  differential  equa- 
tion.    Its  direct  integral  is 

a  cos'  .     a t  sin  I    ,     n    — atsvai 

s —  \  •  L  =  Ac         z-\-Bc 
a  sin  |  ' 

in  which  A  and  B  are  arbitrary  constants.  This  form  is  identical 

with  that  given  by  Vieille  in  his  solution  of  the  particular  case 

of  this  problem,  in  which  p  vanishes. 

492.     If  a<(^eotif—a2p2 

the  value  of  s  must  be  such  as  to  render  the  second  member  of 

(2629)  positive ;  that  is,  the  limiting  values,  between  which  the 

body  cannot  be  contained,  are  defined  by  the  equation 

a 
s0smsz=z —  -cot* +i/|(-cot*j  — ct2p2  —  a\ 
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The  velocity  of  the  body  upon  the  line  vanishes  at  these  limits. 

If  the  initial  direction  of  the  motion  of  the  body  is  towards  these 

limits,  it  will  approach  them  with  a  diminishing  velocity ;  and 
when  it  arrives  at  the  nearest  limit,  the  direction  of  motion  will  be 

reversed,  and  it  will  thenceforth  continue  to  move  away  from  the 
limits. 

If  a  =  —  a?p2 

one  of  the  limits  is  at  the  foot  of  the  perpendicular  (p),  and  the 

other  limit  is  above  this  foot,  at  the  point  for  which 

s===   -cot*. 

a  z 
If  #<  —  «2j02, 

one  of  the  limits  is  above  the  foot  of  the  perpendicular,  while  the 
other  is  below  it.     But  if 

a>  —  a2p2 

while  it  satisfies  the  condition  (26225),  both  the  limits  are  above 

the  foot  of  the  perpendicular. 

493.    If  «>(^cos^)2—  «y, 

the  motion  will  always  continue  in  the  same  direction  along  the  line, 

(a-\-a2p2)  will  express  the  square  of  the  velocity  of  the  body  upon 
the  line  when  it  is  at  the  foot  of  the  perpendicular.  The  point  of 

least  velocity  upon  the  line  will  be  determined  by  the  equation 

g  cos . 

and  the  least  velocity  will  be 



—  264  — 

494.     If  a  =  (|  cot  if— ay 

the  direction  of  the  motion  along  the  line  is  not  subject  to  reversal 

for,  in  this  case,  the  equation  (2629)  becomes 

Dts  =  a s  sin  *  -(-  -  cot* ; 

of  which  the  integral  is 

(OL  v  sin
  \ 

  r  +  1 )  • 

g  cos  *      '       / 

The  time  of  reaching  the  point,  at  which 

9.  cos  I 

a  sin' 

2sJ 

that  is,  the  point,  at  which  the  velocity  vanishes,  becomes  infinite ; 

or  in  other  words,,  the  body  never  reaches  this  point,  at  which  its 

direction  of  motion  is  to  be  reversed ;  or  if  the  body  is  placed  at  this 

point  without  any  initial  velocity  along  the  line,  it  will  remain  sta- 
tionary upon  the  line. 

495.  If  the  rotating  line  is  the  circumference  of  a  circle,  of  which 

the  radius  is  R,  let  the  origin  be  assumed  so  that  the  centre  of  the 

circle  may  be  upon  a  level  with  the  foot  of  the  perpendicular  (p),  let 

fall  from  the  origin  upon  the  plane  of  the  circle.     Let  then 

k  denote  the  distance  of  the  centre  of  the  circle  from  the  foot 

of  the  perpendicular, 

<p  the  angular  distance  upon  the  circumference  of  the  body 

from  the  lowest  point  of  the  circumference, 

and  the  values  of  z  and  u,  in  equation  (2622),  are  given   by  the 



—  265  — 

equation 

2  =  Rcosy  sin? -|-^  cos?, 

u2  =  (k  -j-  R  sin  9)2  -f-  (i>  sin?  —  R  cos  9  cos?)2 

—  p  _|_  ̂2  _|_ys  gin2  p  _|_  2  /<•  R  sin  y  _ j,,  7?  sin  2  ?  cos  95  —  R2  sin2?  cos2  9 , 

whence  equation  (2622)  becomes 

R2  (Dt  (pf  =  a-\-  a2  (F  -}-  i?2  -j-/  sin2 *)  +  2gp  cos?  +  2 a2/c R  sin  9 

-j-  2  (y  —  «2jo  cos?)  R  sin?  sin  9)  —  a2 R2sm2pz  cos2  9 . 

The  points  of  maximum  and  minimum  velocity  along  the  arc 

are,  therefore,  determined  by  the  equation 

a2  Jc  R  cos  (fi  —  (g  —  a2p  cos  z )  R  sin?  sin  tpx  -f-  a2  R2  sin2?  sin  (p1  cos  9)!  =  0 , 

and  are,  consequently,  at  the  intersections  of  the  circumference  with 

the  equilateral  hyperbola,  which  is  described  in  the  plane  and  passes 

through  the  centre  of  the  circle,  of  which  one  of  the  asymptotes  is 

horizontal,  and  the  polar  coordinates  (r2,  92)  °f  the  centre,  with 

reference  to  the  centre  of  the  circle,  are  given  by  the  equations, 

r2  sin  92  =  —  ̂   cosec2  ? , 

r2  cos  92  =  4  cosec?  — p  cot  ? . 

This  hyperbola  cannot  cut  the  circumference  in  less  than  two 

points ;  and  there  are  four  points  of  intersection  when  the  distance 

from  the  centre  of  the  circle  to  the  nearest  point  of  the  branch 

of  the  hyperbola,  which  does  not  pass  through  it,  is  less  than  the 

radius  of  the  circle.  The  polar  coordinates  (r3,  93)  of  this  nearest 

point  of  the  second  branch  of  the  hyperbola  are  given  by  the 

equations 

tan  93=  y/  tan  92, 

r3  =  r2  cos  92  sec3  93 . 

34 
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496.  When  the  body  is  originally  placed  at  one  of  the  points 

of  maximum  or  minimum  velocity,  without  any  initial  velocity 

along  the  circle,  it  remains  stationary  upon  the  curve ;  but  its 

position  upon  the  curve  is  one  of  stable  equilibrium,  when  it  is 

placed  at  a  point  of  maximum  velocity,  and  a  position  of  unstable 

equilibrium,  when  it  is  placed  at  a  point  of  minimum  velocity. 

When  the  body  is  originally  placed  upon  the  curve,  without  any 

initial  velocity  along  the  line,  at  a  point  different  from  these  points 

of  maximum  or  minimum  velocity,  it  oscillates  about  that  point 

of  greatest  velocity  from  which  it  is  not  separated  by  a  point  of 

least  velocity ;  its  oscillations  embrace  both  the  points  of  great- 

est velocity,  when  the  velocity  is  sufficient  to  carry  it  through 

either  of  the  points  of  least  velocity,  that  is,  when  the  velocity, 

which  corresponds  to  the  initial  point  in  the  general  equation 

(2657),  is  less  than  that  which  corresponds  to  one  of  the  points 

of  least  velocity.  When  the  initial  velocity  of  the  body  is  greater 

than  the  excess,  which  is  given  by  equation  (2657)  of  the  velocity 

at  the  initial  poitft  above  the  least  of  the  minimum  velocities,  the 

body  constantly  moves,  in  the  same  direction,  through  the  entire 
circumference. 

497.  The  case  in  which  the  initial  velocity  of  the  body  is 

just  equal  to  the  excess,  which  is  given  by  equation  (2657)  of  the 

velocity  at  the  initial  point  above  either  of  the  minimum  veloc- 

ities, admits  of  integration.  In  this  case,  it  is  easy  to  express  the 

equation  (2657)  in  the  form 

R  (Dt  <pf  =  2a2k  (sin  cp  —  sin  Cjpx)  —  a2 R  sin2??  (cos2  (p  —  cos2  g^) 

-\-  2  (</ —  a2pcospz)  sin rz  (cos  <p  — cos^), 

which  by  means  of  (26520)  assumes  the  form 

R  (Dtcp)2  =  a2  sm2pz  [2r2cos((p  -f-<p2)  —  2r2cos(<jp1-]-(p2) 
—  R  cos2  (p  -\-  R  cos2  cp{]  . 
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The  condition  for  the  determination  of  the  point  of  min- 

imum velocity  gives  also  the  equation 

2r2  sin  (^  -j-  y2)  =  i?  sin  2  <p1} 

which  substituted  in  the  previous  equation  with  the  notation 

<P=.i\(p  —  (p1) 

jg-==sin(qp1  —  qp2) 
sin  (cjPi  +  fjPa) 

gives 

{Dt  <Pf  =  i  a2  sin2 \  sin2  <P  [cos  2  ( <£  -f  ̂   —  II]  . 

If,  therefore,  i?  is  negative  and  absolutely  greater  than  unity, 

that  is,  if  (p1  is  not  in  the  same  quadrant  with  (p2,  the  value  of 

<P  is  unlimited ;  but  if  II  is  less  than  unity,  the  limits  of  <£»  are 

given  by  the  equation 

cos  2  (<P-\-(p1)=  II. 

The  integral  of  the  equation  (267n)  is 

a  t  sin  pz  y/  ( \  cos  2  c/)x  —  £  iT) 

_  j       sin  (<£>+?!)  y/(cos  2yi  —  //)  —  sin  ?1  y/[cos  2  (<p-f  yQ  —  #] 
°  cos(0)-|-qr1)v/(cos2  91  —  H)  -\-  cos  ̂   \J  [cos  2  (  0>  +  qn)  — -#]  " 

498.  J7'  ̂ <?  rotating  line  is  a  parabola,  of  which  the  transverse 
axis  is  vertical,  let 

q  be  the  distance  from  the  vertex  to  the  focus  of  the  parabola, 

and  let  the  origin  of  coordinates  be  assumed  to  be  upon  a  level 

with  the  vertex,  and  let 

k  denote  the  distance  of  the  vertex  from  the  foot  of  the  perpendicu- 

lar (p)  let  fall  from  the  origin  upon  the  plane  of  the  parabola. 
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If  the  axis  of  xy  is  the  horizontal  line,  which  is  drawn  in  the 

plane  of  the  parabola  through  its  vertex,  and  if  the  vertex  is 

the  origin  of  xx,  the  values  of  z  and  u  are  given  by  the  equations 

iqzz=x\, 

u*  =^+(*  -\-xxf; 

and  the  equation  (2622)  is  reduced  to 

(D.  sf  =  «'/  +  «2  (*  +  "if  +  |f  +  " 

=  (*+i)W*f. 

The  integral  of  this  equation,  in  its  general  form,  can  be 

obtained  by  elliptic  functions.  The  point  of  least  velocity  along 

the  curve  is  determined  by  the  equation 

2tf(*  +  »0+!*i  =  0j 

but  there  is  no  such  point,  when 

q  =  —  l-. 

*  2a? 

When  this  latter  condition  is  satisfied,  and  also 

the  velocity  of  the  body  along  the  curve  is  constant. 
When  k  vanishes  and 

a  =  a2  (4  f  — p2)  -j-  2y^, 

the  equation  (26810)  becomes 

D.1  =  ±*S\I  (*+$. 
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so  that,  in  this  case,  the  horizontal  velocity  of  the  body  upon  the 

plane  of  the  parabola  is  constant. 

499.  In  the  especial  case,  in  which  the  initial  velocity  is  that 

which  corresponds  to  the  vanishing  of  the  minimum  velocity,  let 

x2  be  the  value  of  xx  for  this  point  of  minimum  velocity, 

and  the  integral  of  the  equation  of  motion  is 

2^v/(«2-r-^)  =  V/(^2i  +  4?2)  +  ̂ 2log[^-}-v/(^+4?2)] 

X±  — —  x% 

500.  When  the  axis  (h)  of  rotation  is  not  vertical,  the  equation 

of  motion  is  still  reduced  to  the  form  (26124),  and  when  the  rotation 

is  uniform,  it  becomes 

D2ts  =  a2u  cos"  -\-g  cos  *  =  I  a2Dsu*  -\-g  cos*;. 

501.  Wlien  the  rotating  line  about  the  inclined  axis  is  straight,  if 

the  point  of  the  axis  of  rotation  which  is  nearest  to  the  rotating 

line  is  assumed  as  the  origin,  let 

p  be  the  perpendicular  upon  the  line  from  the  origin, 

let  s  be  counted  from  the  foot  of  the  perpendicular  (p),  and  the 

time  from  the  instant,  when  the  plane  of  the  directions  of  the  axis 

and  the  rotating  line  is  vertical.  The  values  of  u  and  cos  \  are 

given  by  the  equations 

a2=pi  -j-s2sin", 

cos^  =  cos  *  cos  *  -J-  sin h,  sin  hz  cos  (« t) ; 
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which  reduce  the  equation  (26918)  for  this  case  to 

D2s  =  a2s  sin2*  -\-g  cos  *  cos  *  -j-  g  sin  )  sin  *  cos  (a  t) . 

The  integral  of  this  equation  is 

.     a  t  sin  *  ,     j-.    —  a  t  sin  *       q  cos  *  cos  *  q  sin  *  sin  *  ,     , . 
s  =  Ac         S+Bc  s— y   2  .'  2A   /,.   ,'  .  '    cos(al), 1  or  sin  ,  a2  (1 -j- sin%')  v      '' 

in  which  A  and  Z?  are  arbitrary  constants. 

502.  If  in  the  general  case  of  the  rotation  of  a  plane  curve  about  the 

inclined  axis  the  time  is  computed  from  the  instant,  when  the  plane 

of  the  curve  is  vertical  the  expression  of  (*)  is  given  by  the 
formula 

cos  *  ==  cos*  cos  *  -\-  sin  *  sin  *  cos  at. 

MOTION    OF   A    BODY    IJPOJT   A   LINE    IN     OPPOSITION   TO     FRICTION,   OR   THROUGH   A 

RESISTING    MEDIUM. 

503.  The  forces  of  nature,  which  resist  the  motions  of  bodies, 

are  of  various  kinds  and  subject  to  different  laws.  While  their 

philosophical  discussion  must  be  reserved  to  its  appropriate  place, 

it  is  sufficient  for  the  present  purpose,  to  recognize  them  as  forces, 

which  are  opposed  to  the  motion  of  bodies,  and  which  depend  in 

general  upon  the  relative  motions  of  the  body  and  of  the  origin 

of  the  resistance,  whether  this  origin  be  solid  or  fluid. 

504.  If  either  of  the  resisting  forces  is  denoted  by  JS1}  and 

if  (* )  denotes  the  angle  which  the  direction  of  its  action  makes 
with  the  path  of  the  body,  the  resistance  to  the  motion  of  the 

body  in  its  path  will  be  expressed  by  /Si  cos  J  ,  which  may  be 

immediately  introduced  into  the  equation  of  motion. 
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505.  If  the  bod//  moves  upon  a  fixed  line,  the  equation  of 

motion  (24319)  becomes 

A/  =  Ai2+^1(5r1coBy. 

If  there  is,  likeivise,  no  motion  in  the  resisting  medium,  all  the 

forces  of  resistance  can  be  combined  in  one,  which  is  directly 

opposed  to  the  motion  of  the  body,  and  the  preceding  equation 
assumes  the  form 

Dts'  =  Ds£2  —  S. 

506.  If  there  is  no  external  force,  these  equations  become 

Dts'  =  —  S. 

507.  The  integral  of  the  latter  of  these  equations  is 
t=—Js's: 

Let  JS  have  the  form 

S=a-\-bs'-\-es'?, 

in  which  a  and  e  are  positive,  in  the  case  of  nature,  and 

b  +  \]{4:ae)>0, 

because  8  is  always  positive  when  /  is  positive.     The  correspond- 
ing integral  of  (27117)  is 

—  A  4-  1  W^+A+V  (^-4ae) 
A    1    ̂ J^  —  iae)      °2es'+b  —  \/(l>2—4ae) 

in  which  A  is  an  arbitrary  constant,  and  the  former  integral  cor- 
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responds  to  the  case  of  b2<^4ae,  while  the  latter  corresponds  to 

£2>4«e.  The  velocity  vanishes  after  the  time  t0  given  by  the 

equation 

t0  =  A—  ...    2     gvtan1-13 y/^ae  —  P)  ^(iae  —  b2) 

^~Tv/(462  —  4ae)    °^b  —  \/ (b*—  4ae)' 

These  values  are  infinite  in  form,  when 
b2  =  4:ae; 

but,  in  this  case,  the  integral  is 

ft  (6s'  +  2  a)  I    2  es'-f-S' 

so  that  the  velocity  vanishes,  when 

t0  =  A  +  l  =  A  + 
Sj(ae) 

These  values  become  infinite  in  form  when  both  b  and  e 

vanish,  but,  in  this  case,  which  includes  that  of  friction  upon  a 

straight  path,  the  integral  is 

t  =  A  —  -=s^^-: a  a 

and  the  instant,  at  which  the  velocity  vanishes  is  determined   by 

the  equation 

t 

  *0 

°  —  a' 
When  a  vanishes,  the  value  of  t0  is  actually  infinite,  so  that 

the  velocity  of  the  body  can  never  be  wholly  destroyed  by  any 

such  form  of  resistance.     It  would  seem,  from  the  preceding  equa- 



—  273  — 

tions,  that  the  direction  of  motion  would  be  reversed  after  the 

time  (70).  But  this  conclusion,  which  is  absurd,  because  it  would 

give  a  resistance  the  power  of  creating  motion,  arises  from  the 

defective  forms  of  notation  which  do  not  express  the  solution  of 

continuity  corresponding  to  the  abrupt  ceasing  of  the  friction  at 

the  instant  of  the  suspension  of  motion. 

508.  When  the  resistance  is  simply  that  of  friction  arising  from 

the  pressure  of  the  moving  body  upon  the  line,  to  which  its  motion  is 

restricted,  let 

p  denote  the  direction  of  the  perpendicular  to  the  fixed  line, 

which  is  drawn  in  the  common  plane  of  the  direction  of 

the  external  force  and  of  that  of  the  line, 

dv  the  elementary  angle  made  by  two  successive  radii  of  cur- 
vature to  the  fixed  line,  and 

a  the  coefficient  of  friction, 

and  the  equation  of  motion  becomes  by  (24518) 

Dts  =  DJ2  —  aDp£l  —  ̂ f=  DSS2  —  aDp£l  —  as  V . 

509.  When  there  is  no  external  force,  this  equation  becomes 

Dts'  =  —  as'vf; 
the  integral  of  which  is 

log/  =  ̂ 4  —  av , 

in  which  A  is  an  arbitrary  constant.     Another  integration  gives 

P  av  —  A         r •/ '  av  —  A\         C(      av—A\ 

t=l°      =JAD»se      )=Xy>c      > 
in  which  c  is  the  Naperian  base,  and  ̂ >  the  radius  of  curvature  of 
the  fixed  line. 

35 
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510.  If  the  fixed  line  is  the  involute  of  the  circle,  and  if  its 

equation  is 

q  =  Rv, 

the  equation  (27328)  becomes 

t=X(av-l)c—A  +  B, 

in  which  B  is  an  arbitrary  constant. 

511.  If  the  fixed  line  is  the  logarithmic  spiral,  and  if  its  equa- 
tion is 

Q  =  Rc      , 

the  equation  (27328)  becomes 

a-\-o  ' 

in  which  B  is  an  arbitrary  constant. 

512.  If  the  fixed  line  is  the  cycloid,  and  if  its  equation  is 

q  =  4  R  sin  v , 

the  equation  (27328)  becomes 

,  4JR    /      .  \     av  —  A    ,     „ 
?  =  j.iasmv  —  cosj>)c  ~r-" 

in  which  B  is  an  arbitrary  constant. 

513.  When  the  resistance  of  the  line  is  constant,  and  the  resisting 

medium  is  moving  ivith  an  uniform  velocity  in  an  invariable  direction,  and 

the  resistance  arising  from  it  is  proportional  to  the  velocity  in  the  medium,  let 

a  be  the  constant  resistance  of  the  line, 

h  the  resistance  of  the  medium  for  the  unit  of  velocity,  and 

b  the  velocity  of  the  medium, 
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and  if  the  direction  of  the  motion  of  the  medium  is  assumed  for 

that  of  the  axis  of  x,  the  equation  of  motion  becomes 

D,s'  =  DSS2  —  a  —  h  s[  cos  * 

=  Ds  £1  —  a  -f  k  (b  cos  ;  —  /) , 

in  which  it  is  carefully  to  be  observed  that  the  sign  of  a  must  be 

reversed  simultaneously  with  the  direction  of  motion. 

514.      When  the  fixed  line  is  straight  and  there  is  no  external  force 

the  integral  of  the  equation  (2756)  becomes 

log  (s  —  b  cos  *  -f-  j)  =  A  —  h  t 

in  which  A  is  an  arbitrary  constant.     When 

a<^b  h  cos  * , 

the  velocity  of  the  body  will  never  be  destroyed,  but  will  constantly 

approximate  to 

I  s  a 

But  when 

a^>bh  cos  * , 

the  velocity  will  vanish  after  the  time  t0,  determined  by  the  equation 

log  (J — beosU  =  A  —  ht0. 

If  the   initial   velocity  of  the   body  had  been  negative,   the 

equation  of  motion  would  have  assumed  the  form 

log(—  /if  icwi  +  j)  =  — 4-fA<; 

so  that  the  velocity  would  have  vanished  after  the  time  t0,  deter- 
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mined  by  the  equation 

log  (b  cos  'x  -f-  jj  =  —  A  -f-  h  t0. 

The  body  would  then  have  remained  at  rest  unless  the  con- 

dition (27514)  had  been  satisfied,  in  which  case  its  subsequent  motion 

would  be  defined  by  the  equation  (275n). 

515.  When  a  heavy  body  moves  upon  a  fixed  straight  line,  and  the 

resistances  consist  of  a  constant  resistance,  arising  from  the  friction  along 

the  line,  and  also  of  a  resistance  arising  from  a  resisting  medium,  ivhich 

has  a  uniform  motion  in  the  direction  of  the  fixed  line  ;  and  when  the  re- 

sistance of  the  medium  is  'proportional  to  the  square  of  the  velocity  of  the 
body  in  the  medium,  let 

a  be  the  constant  of  friction, 

b  the  velocity  of  the  medium,  and 

h  the  resistance  of  the  medium  for  the  unit  of  velocity. 

The  line  may  be  assumed  to  be  vertical  without  diminishing 

the  generality  of  the  investigation  and  the  equation  of  motion 
will  be 

Dts'  =zg  —  a  —  h(s  —by, 

in  which  the  signs  of  a  and  h  must  be  reversed  simultaneously  with 

those  of/  and  (/  —  b)  respectively.  The  equation  of  motion  has 

precisely  the  same  form  with  that  of  §  507,  so  that  the  forms  of 

the  integral  are  the  same  which  are  there  given,  but  the  constants 

are  not  subject  to  the  restrictions  of  that  section. 

If,  then,  the  initial  velocity  is  upward  and  exceeds  that  of 

the  medium,  when  the  medium  is  also  moving  upwards,  the  ascend- 

ing velocity  decreases  by  the  law  expressed  in  the  equation 

.        s>-b  =  s/^tan[(i-r)^h(g  +  a))], 
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in  which  x  is  an  arbitrary  constant.  This  law  of  ascent  continues 

until  the  body  is  brought  to  rest  when  the  medium  is  not  moving 

upwards.  But  when  the  medium  is  moving  upwards,  it  continues 

until  the  instant  (t),  when  the  velocity  of  the  body  is  the  same 

with  that  of  the  medium.  After  this  instant,  the  velocity  de- 
creases by  the  law 

/-^  =  V/^Tan[(^~'r)v/(M^  +  a))]; 
which  continues  forever  if 

g  +  a<hb* and  the  velocity  constantly  approximates  to  that,  which  is  deter- 
mined by  the  equation 

y-f  a  =  h(s'  —  bf. 
But  when 

g  +  a>hb2, 
the  body  is  brought  to  a  state  of  rest,  in  which  it  continues  per- 

manently if 

g —  a<ihb2. 

But  if  the  motion  of  the  medium  is  upward,  and 

g  —  a>hb2, 

the  body  moves  from  the  state  of  rest  with  an  increasing  descending 

velocity  of  which  the  law  is  expressed  by  the  equation 

sr-b  =  yJ^T*n[(i-~*1)^(g-a))-], 

in  which  %x  must  be  determined  so  that  the  instant  of  rest  coincides 
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with  that  given  by  the  equation  (2778).  The  increasing  velocity 

continually  approximates  to  that  which  is  determined  by  the 

equation 

g  —  a=h(s—  bf. 

The  state  of  rest  to  which  the  body  is   brought,  when   the 

medium  is  not  moving  upwards,  is  permanent  if 

a  —  </>hb2. 

But  if,  on  the  contrary, 

a  —  (/<ihb2 

the  body  moves  from  the  state  of  rest  with  an  increasing  descending 

velocity,  of  which  the  law  is  expressed  by  the  equation 

when 

in  which  r1  must  be  determined  so  that  the  instant  of  rest  coincides 

with  that  given  by  the  equation  (2763y).  This  law  of  motion  con- 
tinues until  the  instant  t1}  when  the  downward  velocity  of  the 

body  becomes  the  same  with  that  of  the  medium ;  and  after  this 

instant,  the  law  of  increasing  velocity  of  descent  is  expressed  by 

the  equation  (27729)  ;  so  that  the  velocity  continually  approximates 

to  that  which  is  determined  by  the  equation  (2784). 

But  when  the  body  begins  to  descend  from  the  state  of  rest, 

and 

9<a, 
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the  law  of  descent  is  expressed  by  the  equation 

^-h  =  sJa-^Goti{rl-t)sJ{h{a-g))-], 

so  that  the  increasing  velocity  constantly  approximates  to  that 

which  is  determined  by  the  equation 

a—g  =  h{s'  —  bf. 

If  the  initial  velocity  is  downward,  and    exceeds  that   deter- 

mined by  the  equation  (2784),  the  decreasing  velocity  when 

g>a 
is  expressed

  
by  the  equation 

in  which  r  is  an  arbitrary  constant.  If,  therefore,  the  motion  of 

the  medium  is  downward,  or  if  it  is  upward  and  the  condition 

(27724)  is  satisfied,  the  decreasing  velocity  continually  approximates 

to  that  which  is  determined  by  the  equation  (27729).  But  if  the 

motion  of  the  medium  is  upward  and  the  condition  (2772i)  is 

satisfied,  the  body  is  brought  to  a  state  of  rest  which  is  permanent 

if  the  condition  (277n)  is  also  satisfied.  If,  however,  the  condition 

(277n)  is  satisfied  by  the  upward  motion  of  the  medium,  the  body 

leaves  the  state  of  rest  and  ascends  with  an  increasing  velocity, 

which  is  defined  by  the  equation 

/_rj==v/.ttf!Cot[0-r1)^(AO  +  a))], 

in  which  %x  must  be  determined  so  that  the  instant  of  rest  coin- 

cides  with   that   which   is    given   by  the   equation   (27915).      The 
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ascending  velocity  continually  approximates  to  that  which  is 

determined  by  the  equation  (27715). 

If  the  initial  velocity  is  downward,  and  exceeds  that  of  the 

medium,  when  the  medium  is  also  moving  downwards,  the  de- 

scending velocity,  when 

decreases  by  the  law,  expressed  in  the  equation 

'-*=v^W(*-ov(*(«-j))]> 

in  which  %  is  an  arbitrary  constant.  This  law  of  descent  continues 

until  the  body  is  brought  to  rest,  when  the  medium  is  not  moving 

downwards;  but  when  the  medium  is  moving  downwards,  the 

law  continues  until  the  instant  t,  when  the  velocity  of  the  body 

is  the  same  with  that  of  the  medium.  After  this  instant,  the  law 

of  decreasing  velocity  becomes 

which  continues  until  the  body  is  brought  to  rest,  when  the  condi- 

tion (2789)  is  satisfied.  But  when,  on  the  contrary,  the  condition 

(27812)  is  satisfied,  the  body  continues  to  move  forever  with  the 

law  of  decreasing  velocity  expressed  in  (28019),  and  the  velocity 

continually  approximates  to  that,  which  is  determined  by  the 

equation  (2797).  When  the  body  has  been  brought  to  the  state 

of  rest,  the  condition  and  laws  of  leaving  it  are  the  same  with 

those  defined  in  (27923_3J),  when 

g>a. 
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THE     SIMPLE     PENDULUM     IN     A    RESISTING     MEDIUM. 

516.  When  the  curve  is  the  circumference  of  a  vertical  circle,  the 

problem  is  that  of  the  simple  pendulum  in  a  resisting  medium.  If  the  arc 

of  vibration  is  supposed  to  be  so  small  that  its  powers,  which  are  higher 

than  the  square  may  be  neglected,  and  if  the  resistance  arising  from  the 

medium  is  supposed  to  be  proportional  to  the  velocity,  and  to  be  combined 

ivith  a  constant  friction,  let 

a  be  the  friction,  and 

h  the  resistance  of  the  medium  for  the  unit  of  velocity, 

and   the  equation   of  motion  becomes,  by   adopting   the  notation 

of  §  487, 

B1 9  =  —  ̂   9  +  a  —  h  Dt  9 , 

in  which  the  sign  which  precedes  a,  must  be  the  reverse  of  that  of 

Dt  9 .     The  integral  of  this  equation  is 

,    Ra    ,    qpo     —  \ht    .     7  , 

<P  =  ±—  +jc  smkt, 
in  which 

It  =  i/  ̂  cos  a , 

hh  =  J  ̂   sin  « , 

and  the  arbitrary  constants  have  been  determined  so  that  the  initial 

angular  velocity  (9^)  shall  be  the  maximum  velocity,  and,  therefore, 

the  initial  value  of  9  is 

I   Ha 

—    9 

36 
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517.  The  equation  (2812i)  only  applies  to  the  first  vibration 

and  for  the  (m-\-  l)st  vibration,  the  correct  equation  is 

in  which  tm  is  the  instant  of  the  maximum  angular  velocity  {y'm)  of 
that  vibration  and  the  doubtful  sign  is  alternately  positive  and 

negative  for  the  successive  oscillations,  so  that  the  position  of 

maximum  velocity  is  always  upon  the  descending  portion  of  the 
oscillation. 

518.  The   angular  velocity  of  vibration  is  expressed  by  the 

equation 

«/  — «/    „  —  h  h  (*  —  *m)  COS  [k  (t  —  T,„)  -f  ft] t  — y™6  cos«        ' 

and  it  vanishes  for  the  instants 

,         —  n        a t  —  Xm  +  2k~lc 

which  correspond  to  the  beginning  and  end  of  the  oscillation.     The 

whole  time  of  oscillation  is,  therefore, 

Tn  
I R 

—  T  =  7i:\/-seca, 
k  V  g 

which  is  invariable,  although  it  exceeds  the  time  of  vibration  in  a  vacuum, 

in  consequence  of  the  factor,  sec  a . 

519.  The  angular  deviations  of  the  pendulum  from  the  verti- 

cal at  the  beginning  and  end  of  the  oscillation  are  given  by  the 

equation 

—  R  a  —    ,      I R     («  -J-  i  n )  tan  « 



—  283  — 

whence  the  whole  arc  of  the  (m  -\-  l)st  vibration  is 

<Pm  =  2  (p'm  \J  —  c  a      a  Cos  ( I  n  tan  a ) . 

520.  The  angular  deviations  of  the  pendulum  from  the  ver- 
tical at  the  end  of  one  vibration  and  the  beginning  of  the  next  are 

identical,  but  the  deviation  from  the  point  of  maximum  velocity  is, 

on  account  of  the  change  in  the  position  of  this  point,  diminished 

by  the  quantity 
2Ra 

9 

The  successive  values  of  the  maximum  velocity  are  therefore 

connected  by  the  equation 

f/      («  —  i«)tan«        o     "A8—- m>  («+**)  tana 
fm  c  \  ~g  —  T '«  +  1  C  > 

or 

/  _     /     — ft  tan  a        „        IR    ■. —  (a  -\-  \  n)  tan  a ,  ,     — ft  tan  a        n        IR    ; 

9«  +  i  =  9)mC  ~      \  ~gc 

The    general    expression   for   the   maximum   velocity  is   then 
found  to  be 

,  r    — mntancc        n         IR    — («  +  hn)  tan  a  (e— m7rtana  — 1\ 

which,  on  account  of  the  smallness  of  a  and  a,  may  be  reduced  to 

/  r    —  m  n  tan  a       ̂   I R 
<pm  =  <foC  — 2  mad-. 

The  corresponding  value  of  the  arc  of  vibration  is 

^=^og-w^aag-i^g-^tangCos(^tanft)c"mitanC~11- 
or 

_             -mnUna         ±maR 
"  m    "oC    ~   • 
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The  laiv  of  the  diminution  of  the  arc  of  vibration  and  of  the  maxi- 

mum of  velocity  is,  therefore,  such  that  either  of  these  quantities  consists 

of  hvo  terms,  one  of  which  is  dependent  upon  the  portion  of  the  resistance, 

which  is  proportional  to  the  velocity,  and  decreases  in  geometrical  ratio, 

ivhile  the  other  is  principally  dependent  upon  the  constant  friction  and  de- 

creases, sensibly,  in  arithmetical  ratio.  The  vibration  ceases  when  the  second 

term  of  either  of  these  quantities  surpasses  the  first. 

521.  If  the  resistance  is  proportional  to  the  square  of  the  velocity, 

and  if  h  is  its  value  for  the  unit  of  velocity,  the  equation  of  the 

motion  of  the  pendulum  is 

D2  (p  =  —  £  sin  <p  —  h  (D,  <p  f . 

If  one  of  the  first  integrals  of  this  equation  is  supposed  to  be 

(25426),  in  which,  however,  H  is  not  constant  but  variable,  the 

differential  of  (25426)  gives,  by  means  of  this  equation  and  (25426), 

DJI=R2Dt<pD2y-\-gRsmyDty=z  —  hR'i{Dtyy 
=  —  2hDttp  (gRcoscp  -j-  H), 

D<pII=  —  2ghRcos(p  —  2hff; 

and  the  integral  of  this  last  equation  if 

tan  ju,  =  2  h, 
is 

II=zAe     *      l*  —  g  R  sin  fi  sin  ((p  -j-  fi), 

in  which  A  is  an  arbitrary  constant.     The  equation  (25426)  is  then 
reduced  to 

R*  {Dt  9  )2  =  2  A  c~  9  tan  **  +  2 g  R  cos  fi  cos  (9  -f  p) ; 

of  which  the  integral  is 

,  r  R t   T=    I 

J<t> 

y/  [2  A  c  —  <p tan  1"  -j-  2  g  R  cos  fi  cos  (9  -J-  p)  ] ' 
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The  signs  which  precede  the  quantities  h  and  fi  must  be  re- 
versed in  the  alternate  oscillations. 

522.  The  angle  of  greatest  deviation  from  the  vertical  for 

the  (m  -j-  l)st  oscillation  is  determined  by  the  equation 

g  R  cos  fi 

—  wm  tan  u         (  , 
C       T  COS(yw  —  fl) 

=  c<Pm+1  &nflcos(cpm+1-\-p), 

If//  is  adopted  as  the  sign  of  finite  differences,  this  equation 

gives,  when  fi  is  so  small  that  its  square  may  be  neglected, 

J  [cos  cpm  —  (sin  cpm  —  (pm  cos  (pm)  fi]=2  (sin  cpm  —  (pm  cos  <pm)  fi . 

When  the  oscillations  of  the  pendulum  are  so  small  that  the 

fourth  power  of  cpm  may  be  neglected,  and  also  the  product  of  \i 

by  (fin  J  (pm,  this  equation  is  reduced  to 

4<pm  =  —  $p<pi; 

of  which  the  approximate  integral  is 

523.     The  substitution  of  (2855)  reduces  (28427)  to  the  form 

R 

(I)t(pf  =  cos((p-\-fi)-c-((f  +  (fm)tanix  coa  (<pm  —  fi), 2  g  cos  n 

which,  when  fi  is  so  small  that  its  square  may  be  neglected,  becomes 

—  (Dt  (pf  =  cos  (9  +  fi)  —  cos  (q>m  —  fi)  +  cos  <pm  (y  -f-  (pm)  u 

=  cos(p  —  cos  (pm  —  fi  [sin  (p  -\-  sin  (pm  —  (9  +  cpm)  cos  yw] . 

When  the  oscillations  are  very  small,  this  equation  may  be 
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still  further  reduced  to 

which  gives 

The  integral  of  this  equation  is 

The  time  of  the  descending  semioscillation,  deduced  from  this 

equation,  is 

4-0=^(1+^). 

The  time  of  the  preceding  semioscillation  is  obtained  by  re- 

versing the  sign  of  fji,  which  gives 

and  the  time  of  the  ivhole  oscillation  is,  therefore,  the  same  as  if  the  pen- 
dulum vibrated  in  a  vacuum.  The  preceding  formulae  and  conclusions 

coincide,  substantially,  with  those  which  are  given  by  Poisson. 

524.     If  the   law   of  the   resistance  to   the   motion  of  the  pendulum 

may  be  expressed  as  a  function  of  the  time,  let 

2T  denote  the  resistance, 

and  the  motion  of  the  pendulum  in  a  small  arc  is  expressed  by 

the  formulae  (2609)  and  (2617).     If  3"  is  a  periodic  function,  which 
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has  the  same  period  with  that  of  the  vibration  of  the  pendulum, 

it  may  be  expressed  in  the  form 

gr=^0+2l![^cos(?7v/|  +  ̂ )]; 

and,  if  the  variable  portions  of  A  sin  b  and  A  cos  b  are  denoted  by 

d,  these  equations  give 

ff&(Asmb)=k0(l-coS(l^))—  V^/Jainfc—  ̂ cos^y/l+ft) 

+  ̂   cos  ft  + 1,{^  cos  ((z- 1)  ̂ + ft) 

-^cos^+lj^S+Z^-^cosft], 

ffd(Acosb)=  —  A0sin(rfy/|)— Vy/|cosft—  ̂ sin(2^y/|  +  ft) 

+  ̂ 1sinft-lI.[^sin((?-l)y|4-ft) 

+  ̂T-n((/  +  l)^V/|  +  ft)-^1sinft]; 
which  vanish  with  zf. 

525.  if  the  vibrations  of  the  pendulum  cause  the  medium  to  oscil- 

late, the  period  of  the  oscillations  of  the  medium  is  probably  the  same  with 

that  of  the  pendulum,  but  the  successive  phases  of  the  motion  of  the  medium 

are  likely  to  lag  someivhat  behind  those  of  the  pendulum.  Hence  the 

relative  velocity  of  the  pendulum  to  the  medium  may  be  ex- 
pressed by  the  equation 

V=vAcoS(t^  +  b  +  (l), 

in  which  A  and  b  may  be  regarded  as  constant  for  a  single  vibra- 
tion. 
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If,   then,  the    resistance   of  the   medium   is  proportional  to  the 

relative  velocity,  the  value  of  9°  assumes  the  form 

er=2AAeofl(yf+a-fp); 

and  the  equations  (2878_i8)  give 

]?2d(Asmb)=-tsJjiSm(b  +  p) 

£2d(Acoab)  =  —  t^Zico8(b  +  (i) 

_  i  an  (2*y/£  + J +/*)  +  *  sin  (*  +  /*), 

whence 

plogil  =  -.y|cosjJ-i8in(2/v/|4-2i  +  /j)+*Sin(2J  +  /?), 

.£«  =  —  y|sin/5—  Jcos(2*y/|+2J  +  |*)  +  Jcos(2J  +  /J). 

If  T  is  the  time  of  vibration  of  the    pendulum,  the    changes 

of  A  and  b  in  a  single  vibration  are  given  by  the  formula 

J\ogA  =  —  ̂ry/|cos/9  =  —  rc-cos/J, 

//j  =  — *Fi/4sin/J  =  —  71- sin/3. 

i/^  ̂Ae   resistance   is  proportional  to  the  square   of  the  velocity,  the 
value  of  ST  assumes  the  form 

®=2kA2  +  2kA2  cos  (2^t/|+2^  +  2/5), 

in  which  the  sign  of  #  must  be  reversed,  when  the  direction  of  the 
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relative   motion   of  the   body   to   the    medium   is  reversed.     This 

value  of  9°  gives 

k£ 

J_ 
k£ 

^(4sin$)  =  2  —  2cos(y|)  +  cos(y|4-2*4-2/?) 

—  h  cos  (otJ^  +  2^  +  2(i)  —  I  cos  (2*4-2/5), 

^(^cos3)  =  -2sin(y|)-Sin(!5v/|  +  2J4-2^) 

-ism(3ify/|  +  2J  +  2^)  +  |Sin(2J  +  2/5); 
whence 

- <^ ̂ 1  =  2  sin £  —  2  sin(^t/| -f-  i)  +  sin(^ y/|  -f  J  -f  2 /?) 

—  isin(3^i/|4-35-f  2/5)  + isin(3J  +  2/5)— sin(i-|-2/i), 

^•=2cos5  —  2cos(^y/|4-j)4-cos(^»/|4-i4-2/5) 

—  icos(3^y/|4-354-2/3)4-icos(3J4-2/5)— cos(J-f2J). 

The  changes  of  ̂ 4  and  #  in  a  vibration  are  found,  by  having 

regard  to  the  reversal  of  the  sign  of  k  which  corresponds  to  that 

of  V,  to  be 

(/JA  =  —  -V-£-42cos/5, 

g  J  b  =  —  -L6-  It  A  sin  (i . 

i/'-  ̂ e  law  of  the  resistance  is  similar  to  that  of  friction  so  as  to 
be  constant  if  the  medium  is  at  rest,  it  must,  when  the  medium  is  in 

motion,  be  proportional  to  the  quotient  of  the  relative  motion  of 

the    body   through   the   medium   divided   by  the   velocity   of  the 
37 

hA 
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body.     The  form  of  2T  is,  then, 

^       acos(*y/§  +  ft  +  /?) oob(^|  +  *) 

in  which  the  sign  of  a  must  be  reversed,  when  the  direction  of  the 

relative  motion  of  the  body  to  the  medium  is  reversed.  This  value 

of  2T  gives 

?d(Asmb)=  —  cos^i/l  +  ft)  —  sm  (i  cos  Hog  tan(i  ̂  +  ̂"2+ft), 

|d  (4  cos  0)  =  —  sin  (rf  y/|  +  /?)  -J-  sin  8  sin  Hog  tan  (±  re  -j-  *-^|±_5)  ; 
whence 

*4==-5«ii(fv/}  +  *.+  /»)J 

<J  5  =  -  ̂   oos  (^1  +  b  +  /?)  -  ±  sin  fi  log  tan  (j  *  +  lM±l) . 

The  changes  of  A  and  J  in  a  vibration  are 

J  A  =   , 
9 

J  b  =  -j-  sin  fi  log  tan  \  8 . 

The  combination  of  these  values  give 

9  9  6   9 

J  i  =  ll  sin  8  log  tan  i8—n-  sin  8  —  -1/  *  A  sin  (i . ^  °  9  9 

The  change  of  b  is  exhibited  in  the  motion  of  the  pendulum 
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by  a  change  in  the  time  of  vibration,  which  differs  from  that  which 
it  would  be  in  a  vacuum.     The  difference  is 

JT=  —  JbJ-  =  —  -Jb. 
V    9  t 

526.  The  vibration  of  the  pendulum  may  be  regarded  as 

affected  by  the  medium  not  only  in  consequence  of  its  direct  action 

as  resistance,  but  also  indirectly,  because  a  portion  of  the  medium 

may  be  regarded  as  composing  a  part  of  the  moving  body,  and  its 

motion  is  sustained  by  the  action  of  gravitation  upon  the  body. 

If,  then, 

q  denotes  the  ratio  of  the  mass  of  that  portion  of  the  medium 

which  moves  with  the  body  to  the  mass  of  the  body, 

the  motion  of  q  may  be  assumed  to  have  a  period  identical  with 

that  of  the  body,  and  an  amplitude  of  excursion  proportional  to 

that  of  the  body,  so  that  its  velocity  may  be  of  the  form 

The  resistance,  then,  arising  from  the  preservation  of  the 

motion  of  q  may  be  expressed  in  2T  by  the  form 

sr=,z>1r=-i^2--n(<v/j+*_/i'). 
The  similarity  of  this  form  to  that  of  (2884)  shows  that  the 

corresponding  influence  upon  A  and  b  may  be  expressed  by  the 

equations 
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The  importance  of  this  form  of  resistance  was  first  noticed 

by  Dubuat  and  has  been  investigated  experimentally  by  Dubuat, 

Bessel,  and  Baily.  The  formulEe  (29027)  and  (29129)  may  be  adopted 

as  a  guide  in  the  conduct  of  these  and  similar  investigations. 

527.  In  the  application  of  the  preceding  formulae  to  the  re- 

duction of  experiments,  the  quantities  a,  h,  k,  and  q  are  inversely 

proportional  to  the  density  of  the  body,  and  directly  proportional 

to  the  density  of  the  medium,  and  for  bodies  of  similar  forms  they 

are  nearly  in  an  inverse  ratio  to  their  linear  dimensions.  For 

pendulums  of  different  lengths,  h  is  proportional  to  the  length  of 

the  pendulum,  and  h  to  the  time  of  vibration.  If  iZj  denotes  the 

resistance  of  the  medium  which  is  proportional  to  the  velocity  for 

the  unit  of  weight  and  the  unit  of  surface,  and  if  ff2  denotes  the 

resistance  which  is  proportional  to  the  square  of  the  velocity  for 

the  same  unit  of  weight  and  surface,  the  values  of  h  and  k,  for  the 

units  of  weight  and  surface,  are 

528.  The  best  experiments  which  have  been  made  with  the 

pendulum  are  almost  wholly  free  from  any  constant  term  of  resist- 

ance, so  that,  in  their  discussion,  this  term  may  be  neglected  which 

reduces  the  formula  (29026)  to  the  form 

JA-=  —  \  THX  A  cos  §—%R  ff2  A2  cos  §, 

of  which  the  approximate  integral  is 

529.  In  order  to  illustrate  these  formulae,  they  may  be  ap- 

plied to  some  of  the  experiments  which  have  been  actually  made, 
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and  in  which  the  diminution  of  the  arc  of  vibration  has  been  ob- 

served. For  this  purpose  the  observations  of  Newton,  Dubuat, 

Borda,  Bessel,  and  Baily  are  selected,  and  the  formula  (29228)  is 

found  to  be  applicable  to  all  these  experiments,  although  the  values 

of  Hi  and  H2  are  different  for  the  different  experiments.  The  unit 

of  length  which  is  here  adopted  is  the  meter,  the  unit  of  weight 

is  the  chiliogramme,  and  that  of  time  is  the  mean  solar  second. 

The  measures  and  weights  are,  however,  given  in  the  form  in 

which  they  were  actually  observed. 

530.  In  Newton's  first  series  of  experiments  upon  the  dimi- 
nution of  the  oscillations  of  a  pendulum,  a  wooden  sphere  of 

6|  English  inches  in  diameter,  weighing  57^  ounces,  of  about 

0.56  specific  gravity,  and  suspended  by  a  fine  wire  so  as  to  give 

10  2  feet  for  the  length  of  the  pendulum,  was  vibrated  until  the  arc 

of  descent  was  diminished  one  fourth  or  one  eighth  of  its  initial 

extent,  and  the  number  of  vibrations  was  recorded.  From  the  re- 

duction of  these  observations,  I  have  obtained  for  the  values  of 

#[  =  0.0223  sec/?, 

J72=  0.4473  sec  ̂ . 

In  Newton's  second  series  of  experiments,  a  leaden  sphere  of 
2  inches  in  diameter,  weighing  261  pounds,  and  suspended  so  as  to 

give  10  £  feet  for  the  length  of  the  pendulum,  was  vibrated  in  the 

same  way  as  in  the  former  series.  From  the  reduction  of  these 

observations,  I  have  obtained 

Ht  =  0.2044  sec  p, 

ff2  =  0.701  sec  /J. 

To  test  the  accuracy  of  these  reductions,  and  their  conformity 

with  the  given  observations,  I  have  computed  the   lengths  of  the 
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observed  arcs  of  vibration,  and  have  placed  them  in  the  following 

table  for  comparison. 

COMPARISON     OF   NEWTON  S     EXPERIMENTS    UPON   VIBRATIONS     OF    THE    PENDULUM 

WITH    COMPUTATION. 

WOODEN SPHERE. LEADEN 
SPHERE. 

in 
Computed Observed 

-Am 

C—O m Computed 

■Am 

Observed 

■Ah 

C—O 
in. in. 

in. 

in. in. in. 
0 64.08 64 

.08 
0 64.03 

64 

.03 

n 56.02 
56 .02 

30 56.04 56 .04 

22§ 

47.91 
48 

—.09 

70 

47.92 

48 

—.08 

0 31.86 32 

—.14 

0 31.92 

32 

—.08 

18i 

27.92 28 

—.08 

53 

28.00 
28 0. 

41§ 

24.19 
24 .19 

121 24.07 

24 

.07 
0 15.99 16 

—.01 

0 16.01 

16 

.01 

35i 

14.01 
14 

.01 

901 

13.99 

14 

—.01 

83i 

11.99 12 

—.01 

204 11.99 

12 

—.01 

0 8.04 8 
.04 

0 8.05 8 .05 
69 7.01 7 .01 

140 
7.01 

7 .01 

1621 

5.95 6 

—.05 

318 5.95 6 

—.05 

0 4.01 4 .01 0 4.03 4 
.03 

121 3.50 

'      H 

0. 193 3.49 H 

—.01 

272 2.99 3 

—.01 

420 2.97 3 

—.03 

0 1.98 2 

—.02 

0 
2.04 

2 .04 
164 1.74 

If 

—.01 

228 
1.74 

If 

—.01 

374 1.52 H .02 
518 

1.46 H 

—.04 

0 1.00 l 0. 
226 

.88 
i 
8 0. 

510 
.75 

f 

0. 

With  these  values  of  Hx  and  ff2,  a  minute  arc  of  vibration 

of  the  wooden  sphere  would  be  reduced  one  eighth  part  in  446 

vibrations,  and  one  fourth  part  in  961  vibrations,  and  a  minute 

arc  of  vibration  of  the  leaden  sphere  would  be  reduced  one  eighth 

part  in  290  vibrations,  and  one  fourth  part  in  625  vibrations. 

531.  Dubuat  vibrated  in  water  a  sphere  of  2.645  French 

inches  in  diameter,  weighing  in  air  40068  grains,  and  in  water 

36448  grains,  and  suspended  so  that  the  length  of  the  pendulum 
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was  36.714  inches ;  he  observed  the  arc  of  descent  at  each  succes- 
sive oscillation.  From  these  observations,  I  have  obtained  a  result 

which  corresponds  with  his  own  in  respect  to  the  law  of  diminution 

of  oscillation,  and  which  gives  for  the  values  of  IIy  and  II2  in  water 

ff2  =  378.7  sec  /?. 

Dubuat  also  vibrated  in  air  a  paper  sphere  of  4.0416  inches  in 

diameter,  weighing  in  air  155  grains,  with  a  density  11.33  times  as 

great  as  that  of  air,  and  suspended  by  a  fine  thread  so  that  the 

length  of  the  pendulum  was  36.714  inches.  From  these  observa- 
tions, I  have  deduced 

£1  =  0, 

H2  =  0.37  sec  §. 

The  following  table  contains  the  comparison  of  Dubuat's  experi- 
ments with  the  computations  derived  from  the  values  of  Hi  and  H% . 

COMPARISON    OF   DUBUAT's    EXPERIMENTS    UPON    THE   DIMINUTION   OF    THE   ARC    OF 

VIBRATION    OF    A    PENDULUM    WITH    COMPUTATION. 

SPHERE  IN  WATER. SPHERE  IN  AIR. 

Ill Computed Observed C—O m 
Computed 

An 

Observed C—O 

in. 
in. 

in. 

in. 

in. 

in. 
0 12.00 12.00 

0. 

0 11.90 12.00 

—.10 

1 9.21 9.25 

—.04 

i 10.10 10.00 .10 
2 7.47 7.42 .05 2 8.77 8.70 .07 

3 6.28 
6.25 

.03 3 7.75 7.79 

—.04 

4 5.42 5.33 .09 4 6.94 6.96 

—.02 

5 4.77 4./5 .02 
G 4.25 

4.25 
0. 7 3.84 3.83 .01 

8 3.50 3.48 .02 
9 3.22 3.23 

—.01 

10 2.97 2.98 

—.01 
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532.  Borda  vibrated  a  platinum  sphere  of  16i  lines  in  diameter, 

weighing  with  the  wire  and  screw  9963  grains,  and  suspended  by  a 

wire  so  that  the  length  of  the  pendulum  was  3.95497  metres.  These 

observations  give  for  the  values  of  Hx  and  H2  in  air 

#i  =  0.10722  sec  /?, 

#2=0.6267  sec  /?. 

In  his  observations  for  determining  the  length  of  the  seconds 

pendulum,  this  same  pendulum  was  vibrated  by  Borda,  and  the 

lengths  of  its  arcs  of  vibration  were  observed.  From  the  mean  of 

these  observations,  I  have  obtained  the  values  of  1^  and  II2, 

#x=  0.11214  sec/?, 

II2  =  0.6564  sec/?. 

Borda  vibrated  the  same  sphere  with  a  smaller  wire,  so  that 

the  weight  was  reduced  to  9958  grains,  and  the  length  increased  to 
3.95597  metres.     From  these  observations  I  have  derived 

#i  =  0.1134  sec/?, 

#2  =  0.590  sec/?. 

The  comparison  of  Borda's  experiments  with  the  computations 
based  upon  these  values  of  #i  and  H2  is  contained  in  the  following 
tables. 

COMPARISON    OF   BORDA's     OBSERVATIONS    UPON    THE     DIMINISHED    VIBRATIONS    OF 
THE    PENDULUM    WITH    COMPUTATION. 

First  Experiment  with  direct  reference  to  the  Diminution  of  the  Arc  of  Vibration. 

m Computed 

An 
Observed 

An 

C—O m Computed Observed 
An 

C—O 

0 

12<)'o 

120^0 

0. 

12600 4.2 4.1 
/ 

0.1 
1800 61.2 61.2 

0. 

14400 
2.8 

2.7 
3600 35.6 35.4 

.2 

16200 1.9 1.8 
5400 22.1 21.9 .2 18000 

1.3 
1.2 

7200 14.2 14.1 .1 19800 0.9 
0.8 

9000 9.4 
9.4 

0. 21600 
0.6 

0.5 
10800 6.2 6.3 

—.1 

36000 0.002 
Very  minute. 
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Experiments  for  determining  the  Length  of  the  Second's  Pendulum  ivith  the  Pendulum  used  in  the  First 
Experiment. 

m 
Mean  Value. 

Computed 

An 
Observed 

Am 

C—O 
Computed Observed 

Am 

C—O Computed Observed 

A, 
C—O 

0 

64
' 

&( 
/ 

0 d 

67
y 

/ 
0 

<oi 

d 0 
2169 

321 

32 i 
2 

34 
34 0 32 32 0 

4338 18 19 

—1 

181 

19 
  1 

2 18 

18 

0 
6507 

101 

11 
I 
2 11 11 0 

101 

11 2 

8676 

6| 

7 1 
2 

6* 

7 

  1 

2 6 6 0 

0 60 60 0 61 
61 

0 
64J, 

64* 

0 
2169 31 

31 
0 

311 311 

0 

32. V 

32* 

0 
4338 

17* 

17 X 
2 

17* 

18 

  X 

2 18 

17* 

X 
2 

6507 10 10 0 
10 

10 

0 

10* 

10 1 
2 

8676 6 6 0 

6* 

6 X 
2 

0 63 63 0 68 68 0 

61 61 

0 
2169 

32 
32 0 34 

341 

1 

  2 

31* 

31* 

0 
4338 18 

18 
0 19 

191 

1 

  2 

17* 

17 

1 
2 

6507 

101 

10 1 
2 11 

11* 

1 

  2 

10 

10 

0 
8676 6 H 

  X 
4 

61 

7 

-* 

6 6 0 

0 
2169 

591 

301 
591 

301 

0 
0 

571 

30 

571 

30 
0 
0 

62 

31* 

62 

31* 

0 
0 

4338 17 17 0 
17 

17 0 18 17 1 
6507 10 10 0 H 10 

— * 
10* 

10 X 
2 

8676 6 6 0 6 6 0 

0 67 
67 

0 
65 65 

0 63 

63 

0 
2169 34 34 0 

33 

331 

— i 

32 

32 0 
4338 

181 

19 1 
2 

181 

18| 

0 

18 

17* 

X 
2 

6507 11 
11 

0 

101 

11"
 

— 1 

10* 

10 JL 
2 

8676 H 6 X 
2 

61 

6* 

0 6 6 0 

0 71 
71 

0 

591 591 

0 
2169 35 

341 

X 
2 31 

31 
0 

4338 

191 

19 
X 
2 

171 

17 

* 
6507 11 

11 
0 

10 10 
0 

8676 7 7 0 6 6 0 

Experiments  J 
or  determining  the  Length  of  the  Second' 

s  Pendulum  with  the  Second  Pendulum. 

m Comp'd 
An Observ'd 

An 

C-0 m 
Comp'd 

Am 

Observ'd An 
C—O m Computed 

Am 

Observed 

Am 

C-0 

/ 

/, 

/ / J / j / 1 / 
0 

551 
551 

0 0 
79 

79 0 0 
111 

110 1 
1575 

341 

35 1 
2 

1538 

47 
47 0 1445 

641 641 

0 
3150 

221 
23   1 

2 
3114 

30 
30 0 2970 

401 

40 1 
2 

4725 15 
16 

—1 

4690 

191 

20 
4495 

26 

26 0 
6300 10 

101 

1 
2 

6266 13 14 

—1 

6020 

171 

18 

1 
2 

7875 7 

71 

1 
2 

7842 9 

91 

1 
2 7545 12 12 0 

9450 5 5 0      9418 5 

6* 

1 
2 9070 8 

8* 

2 

38 
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533.  In  Bessel's  experiments  made  for  the  determination  of 

the  length  of  the  second's  pendulum  of  Konigsberg,  a  brass  sphere 

of  24.164  lines  in  diameter,  weighing  0^.695364  was  suspended  so 

that  the  length  of  the  pendulum  was  1305.3  lines.  From  his  ob- 

servations with  this  pendulum,  I  have  found  these  values  of  1^ 
and  II2. 

Hx  =  0.05698  sec  /?, 

.#2=0.529sec/?. 

The  same  sphere  was  also  vibrated  with  a  length  of  pendulum 

of  441.8  lines,  from  the  observations  of  which  I  have  deduced 

.#!=:  0.0452  sec/?, 

H2  =0.587  sec  /?. 

Bessel  also  vibrated  an  ivory  sphere,  weighing  0M5112,  and 

having  a  diameter  of  24.094  lines,  with  each  of  the  preceding 

lengths  of  pendulum.  From  his  observations  with  this  sphere  and 

the  long  pendulum,  I  have  obtained 

H1  =  0.05517  sec/?, 

JI2  =0.512  sec/2; 

and  from  his  observations  with  the  short  pendulum, 

7^=0.0509  sec/?, 

i72=0.282  sec/?. 

In  Bessel's  experiments  for  the  determination  of  the  length  of 

the  second's  pendulum  at  Berlin,  a  hollow  cylinder  was  vibrated, 
of  which  the  diameter  of  the  base  was  15.305  lines,  and  the  altitude 
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15.296  lines,  weighing,  with  its  appendages,  when  it  was  filled  with 

lead,  0A'.67920,  and  when  it  was  empty,  0\22595.  It  was  suspended 
in  two  different  modes,  in  one  of  which  the  length  of  the  pen- 

dulum was  1304.8  lines,  when  the  cylinder  was  filled,  and  1303.8 

lines,  when  it  was  empty  ;  and,  in  the  other  mode  of  suspension 

the  length  was  440.9  lines  when  the  cylinder  was  filled,  and 

440.7  lines  when  it  was  empty.  From  his  observations  with  this 

pendulum,  I  have  obtained  the  following  values  of  1^  and  II2. 

When  the  cylinder  was  full,  and  the  suspension  was  long,  the 
values  were 

#!=  0.08544  sec/?, 

H2  =  0.733  sec  /?  ; 

when  it  was  full,  and  the  suspension  short,  they  were 

^  =  0.07026  sec/?, 

II2=  0.724  sec/?. 

When  the  cylinder  was  empty,  and  the  suspension  long,  the 
values  were 

ff=  0.09578  sec  /?, 

11=  0.559  sec  /?  ; 

when  it  was  empty,  and  the  suspension  short,  they  were 

^  =  0.07003  sec/?, 

#2=0.270  sec/?. 

In  order  to  compare  the  theory  of  these  values  with  ex- 
periment, all  the  values  of  observation  have  been  recomputed, 

and  the  comparisons  are  contained  in  the  following  tables. 
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COMPARISON  OF  BESSEL  S    OBSERVED  ARCS    OF  VIBRATION  OF   THE   PENDULUM  WITH 

THE  COMPUTED  ARCS. 

1.  Experiments  witk  ike  Brass  Sphere  and  Long  Suspension. 

m Computed 

■A-m 

Observed C—O Computed Observed 

■Am 

C—O Computed 

An 
Observed 

-A-m 

C—O 

0 38.3 38.3 0 39.0 39.0 0 
39.5 

39.5 0 
500 33.7 33.8 

—.1 

34.2 34.2 0 34.6 34.6 0 

1000 29.7 29.8 

—.1 

30.2 
30.1 

.1 

30.5 30.5 0 
1500 26.4 26.4 0 

26.8 26.8 0 27.1 
26.8 

.3 

2000 23.5 23.6 

—.1 

23.9 23.8 .1 24.1 23.9 

.2 

2500 21.0 20.9 .1 
21.3 21.3 0 21.6 21.6 0 

3000 18.8 18.8 0 
19.1 

19.2 

—.1 

19.3 19.3 0 
3500 16.9 16.9 0 17.2 17.2 0 17.4 

17.3 

—.1 

4000 15.3 15.4 

—.1 

15.5 15.5 
0 15.7 

15.7 
0 

0 39.7 39.9 

—.2 

39.0 39.3 

—.3 

39.6 
39.7 

—.1 

500 34.8 34.6 

.2 
34.2 34.1 .1 34.7 

34.8 

—.1 

1000 30.7 30.4 .3 30.2 
30.0 

.2 

30.6 
30.5 .1 

1500 27.2 27.1 .1 26.8 26.4 

.4 

27.1 26.9 .2 
2000 24.2 24.1 .1 

23.9 23.5 

.4 

24.2 24.0 .2 
2500 21.6 

2*1.5 

.1 21.3 
20.9 

.4 

'  21.6 

21.4 

.2 

3000 19.4 19.3 .1 
19.1 

18.5 

.6 

19.4 19.3 .1 
3500 17.4 17.3 .1 

17.2 
16.4 .8 

17.4 
17.3 .1 

4000 15.7 15.5 

.2 

15.5 14.6 

.9 

15.7 
15.5 .2 

0 38.6 38.6 0 
40.0 40.3 

—.3 

40.1 39.9 .2 
500 33.9 

33.9 0 
35.1 34.9 

.2 

35.1 35.2   1 
1000 29.9 29.9 0 

30.9 30.8 

.1 

31.0 31.0 0 
1500 26.5 26.6 

—.1 

27.4 
27.2 

.2 

27.4 27.5   1 

2000 23.7 23.6 

.1 
24.4 

24.2 

.2 

24.4 24.4 0 

2500 21.1 21.2 

—.1 

21.8 
21.8 0 

21.8 
21.9 

— 1 3000 19.0 19.0 0 
19.5 19.5 

0 
19.6 

19.6 0 

3500 17.1 17.1 0 
17.5 

17.4 .1 
17.6 

17.6 0 
4000 15.4 15.4 0 15.8 15.6 

.2 

15.8 15.9 — 1 

0 39.1 
39.1 0 

39.3 39.2 

.1 

38.8 
38.5 

.3 

500 34.3 34.3 0 
34.5 

34.5 0 34.0 34.0 0 
1000 30.3 30.3 0 30.4 30.5 

—.1 

30.1 30.2 — 1 
1500 26.9 26.9 0 

27.0 27.1 

—.1 

26.7 

27.0 

— 3 

2000 23.9 23.9 0 
24.0 24.2 

—.2 

23.8 
24.0 

— 2 
2500 21.4 21.4 0 

21.5 
21.8 

—.3 

21.3 
21.5 

— 2 
3000 19.2 19.3 

—.1 

19.3 19.4 

—.1 

19.1 
19.3 

—.2 

3500 17.2 17.3 

—.1 

17.3 17.5 

—.2 

17.2 17.4 

—.1 

4000 15.5 15.6 —1 15.6 15.7 

1-1 

15.5 
15.5 

0 
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1.  Experiments  wi th  the  Brass  Sphere 
and  Long 

Suspension.  —  Continued. 

m Computed 

Am 

Observed 

-Am 

C—O Computed 

■Am 

Observed 

Am 

C—O Computed 

Am 

Observed 

-4, 

C—O 

0 39.1 39.1 0 37.8 37.7 .1 39.6 
39.7 

—.1 

500 34.3 34.2 .1 33.2 33.3 

—.1 

34.7 34.7 
0 

1000 30.3 30.2 .1 29.4 29.3 .1 30.6 30.6 0 
1500 26.9 27.0 

—.1 

26.1 26.2 

—.1 

27.1 27.1 0 
2000 23.9 24.0 

—.1 

23.2 23.4 

—.2 

24.2 24.1 .1 
2500 21.4 21.5 

—.1 

20.8 20.9 

—.1 

21.6 21.6 
0 

3000 19.2 19.2 0 18.7 18.7 0 19.4 19.4 0 
3500 17.2 17.3 

—.1 

16.8 
16.7 

.1 

17.4 
17.3 

.1 

4000 15.5 15.5 0 15.1 15.2 

—.1 

15.6 
15.6 .1 

0 39.0 39.0 0 41.7 41.6 

.1 

39.4 39.4 0 
500 34.2 34.1 .i 36.5 36.6 

—.1 

34.6 34.5 

.1 

1000 30.2 30.1 

.i 
32.1 32.3 

—.2 

30.5 
30.4 

.1 

1500 26.8 26.5 

.3 
28.4 28.6 

—.2 

27.0 27.1 

—.1 

2000 23.9 24.0 

—.1 

25.3 25.5 

—.2 

24.1 24.1 0 
2500 21.3 21.4 

—.1 

22.5 22.7 

—.2 

21.5 21.6 

—.1 

3000 19.1 19.2 

—.1 

20.2 20.3 

—.1 

19.3 19.4 

—.1 

3500 17.2 17.2 0 18.1 18.1 0 17.3 17.3 0 
4000 15.5 15.5 0 16.3 16.3 0 15.6 

15.6 
0 

0 39.2 39.4 

—.2 

38.6 38.6 0 38.5 
39.3 

—.8 

500 34.4 34.4 0 
33.9 33.4 

.5 
33.8 34.2 

—.4 

1000 30.3 30.3 0 29.9 29.9 
0 

29.8 
30.0 

—.2 

1500 26.9 26.9 0 26.5 
26.7 — 2 

26.5 26.3 .2 
2000 24.0 24.0 0 23.7 23.6 

.1 23.6 23.2 

.4 

2500 21.4 21.5 — 1 21.1 
21.4 

— 3 21.1 20.5 .6 
3000 19.2 19.2 0 19.0 

19.2 — 2 
18.9 18.3 

.6 

3500 17.2 17.1 
.1 

17.1 
17.2 

— 1 17.0 16.3 

.7 

4000 15.6 15.4 
.2 

15.4 
15.4 

0 15.3 14.5 

.8 

0 40.0 39.9 .1 39.9 
39.6 

.3 39.3 39.0 .3 
500 35.1 34.9 

.2 
35.0 

35.0 
0 34.5 34.5 0 

1000 30.9 30.9 0 30.8 
30.9 

— 1 30.4 

30.5 — 1 

1500 27.4 27.5 

—.1 

27.3 27.5 — 2 27.0 
27.1 — 1 

2000 24.4 24.4 0 
24.3 

24.3 0 24.0 24.1 
— 1 

2500 21.8 21.9 

—.1 

21.7 
21.7 

0 
21.5 

21.5 0 
3000 19.5 19.7 — 2 19.5 19.5 0 19.3 19.3 0 
3500 17.5 

17.6 

—.1 

17.5 17.3 .2 17.3 17.3 
0 

4000 15.8 15.8 0 15.8 
15.5 

.3 

15.6 15.5 .1 

0 39.7 39.8 

—.1 

38.9 38.8 

.1 

38.7 38.7 0 
500 34.8 34.8 0 

34.1 
34.0 .1 34.0 34.3 

—.3 

1000 30.7 30.7 0 
30.1 

30.2 
— 1 

30.0 
29.9 

.1 

1500 27.2 27.2 0 
26.7 

26.9 — 2 

26.6 26.4 .2 
2000 24.2 24.2 0 23.8 24.0 

—.2 

23.7 
23.5 

.2 

2500 21.7 21.8 

—.1 

21.3 21.4 

—.1 

21.2 

•21.1 

.1 
3000 19.4 19.4 0 19.1 

19.2 

—.1 

19.0 18.9 

.1 

3500 17.4 17.4 0 17.2 17.2 0 17.1 16.8 .3 
4000 15.7 15.6 .1 15.5 15.4 .1 15.4 15.2 .2 
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1.  Experiments  with  the  Brass  Sphere and  Long  Suspension.  —  Continued. 

m Computed 

■Am 

Observed 

An 
C—O Computed 

A* 
Observed An C—0 Computed Observed 

Ai 
C—0 

0 38.7 38.7 0 39.3 39.3 0 39.1 
39.2 

—.1 

500 34.0 34.1 

—.1 

34.5 34.7 

—.2 

34.3 34.2 .1 
1000 30.0 30.0 0 30.4 30.2 .2 30.3 

30.3 
0 

1500 26.6 26.6 0 27.0 27.0 
0 

26.9 27.0 

—.1 

2000 23.7 23.6 .1 24.0 24.1 

—.1 

23.9 
23.9 0 

2500 21.2 21.2 0 21.5 
21.5 

0 

21.4 

21.4 0 
3000 19.0 19.0 0 19.3 

19.3 
0 

19.2 
19.3 

—.1 

3500 17.1 16.9 
.2 

17.3 
17.3 0 

17.2 
17.2 0 

4000 15.4 15.3 

.1 
15.6 15.5 .1 

15.5 
15.5 0 

0 39.0 39.0 0 
39.8 

39.7 .1 
500 34.2 34.1 .1 34.9 34.9 0 

1000 30.2 30.1 .1 
30.8 30.8 0 

1500 26.8 26.8 0 27.3 27.2 .1 
2000 23.9 23.7 .2 

24.3 24.3 0 
2500 21.3 21.2 0 21.7 21.7 0 
3000 19.1 19.2 

—.1 

19.4 19.4 0 
3500 17.2 17.2 0 17.5 17.4 .1 
4000 15.5 15.4 .1 15.7 15.6 

.1 
2. Experiments  with  the  Brass  Sphere  and  the  Short 

Suspension 

m Computed 

-A-m 

Observed 

C—O 
Computed 

■Am 

Observed 

An. 

C—O Computed 
Am 

Observed 

An C—O 

0 14.4 14.65 

—.2 

13.2 13.5 

—.3 

12.4 
12.4 0 

560 13.5 13.7 

—.2 

12.4 12.7 

—.3 

11.7 11.6 

.1 

1120 12.7 12.8 

—.1 

11.7 11.9 

—.2 

11.0 
10.9 

.1 

1680 12.0 11.9 

.1 

11.0 
11.0 

.0 
10.3 10.2 

.1 

2240 11.3 11.0 .3 10.4 10.3 

.1 
9.7 

9.6 .1 
2800 10.6 10.3 .3 

9.7 
9.7 0 

9.2 
9.0 .2 

3360 10.0 9.6 .4 
9.2 9.0 

.2 
8.6 

8.5 .1 

3920 9.4 
8.9 

.5 8.6 
8.4 

.2 
8.1 8.0 

.1 
4480 8.8 

8.3 
.5 

8.1 7.9 
.2 

7.6 
7.5 

.1 

5040 
8.3 7.8 .5 7.6 

7.4 

.2 

7.2 7.1 

.1 

5600 7.8 
7.3 

.5 7.2 7.0 .2 6.8 

6.7 

.1 
0 12.2 12.3 

—.1 

11.5 11.6 

—.1 

12.2 
12.2 0 

560 11.5 11.5 0 10.9 10.9 
0 

11.5 
11.5 0 

1120 10.8 10.8 0 10.3 
10.3 

0 10.8 10.9 

— 1 

1680 10.2 10.1 .1 9.7 9.7 0 
10.2 10.3 

— 1 

2240 9.6 9.5 .1 9.1 9.1 0 
9.6 9.7 

—.1 

2800 9.0 8.9 

.1 

8.6 
8.6 

0 9.0 9.1 

—.1 

3360 8.5 8.4 .1 
8.1 8.15 

—.1 

8.5 
8.5 0 

3920 8.0 8.0 0 
7.6 

7.7 

—.1 

8.0 8.1 

—.1 

4480 7.5 7.5 0 
7.1 7.3 

—.2 

7.5 
7.7 

—.2 

5040 7.1 7.0 .1 6.7 6.9 

—.2 

7.1 
7.2 

—.1 

5600 6.7 6.5 

.2 

6.3 6.4 

—.2 

6.7 6.8 

—.1 
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2.    Expert ments  with  the  Bras :  Sphere  and  the  Short  Suspei >sion.  —  Continued. 

m Computed 

A. 
Observed 

C—O Computed Observed 

4m 

C—O Computed 
Observed 

An 
C—O 

0 12.5 12.3 .2 12.8 12.7 .1 12.9 12.8 

560 11.8 11.7 

.1 
12.0 11.95 

.1 

12.1 
12.0 1120 11.1 11.0 .1 11.3 11.3 0 11.4 11.3 1680 10.4 10.4 0 10.7 10.7 0 10.8 
10.7 

2240 9.8 9.8 0 10.0 10.15 

—.1 

10.1 
10.2 

— .1 

2800 

9.2" 

9.2 0 9.5 9.5 0 9.5 
9.7 

—.2 

3369 8.7 8.75 

—.1 

8.9 
8.9 

0 9.0 9.1 

—.1 

3920 8.2 8.3 

—.1 

8.4 8.4 
0 8.4 8.6 

—.2 

4480 7.7 7.9 

—.2 

7.9 
8.0 

—.1 

7.9 8.1 

—.2 

5040 7.2 7.45 

—.2 

7.4 7.6 

—.2 

7.5 7.7 

—.2 

5600 6.8 7.0 

—.2 

7.0 
7.2 

—.2 

7.0 7.2 

—.2 

0 13.0 12.9 .1 10.9 10.9 0 
13.4 13.2 

.2 

560 12.2 12.1 .1 10.4 10.3 

.1 

12.6 12.5 

.1 

1120 11.5 11.4 .1 9.7 9.7 0 11.9 11.8 .1 
1680 10.8 10.8 0 9.2 9.2 0 11.2 11.2 0 
2240 10.2 10.3 

—.1 

8.6 8.7 

—.1 

10.5 
10.6 

—.1 

2800 9.6 9.8 

—.2 

8.1 8.2 

—.1 

9.9 9.9 0 
3360 9.0 9.2 

—.2 

7.6 7.7 

—.1 

9.3 9.3 0 
3920 8.5 8.8 

—.3 

7.2 7.2 0 8.8 8.8 0 
4480 8.0 

8.2 

—.2 

6.8 
6.8 0 

8.3 8.3 
0 

5040 7.5 7.8 

—.3 

6.4 

6.4 
0 7.8 

7.85 

—.1 

5600 7.1 7.4 

—.3 

6.0 6.0 0 
7.3 7.45 

—.1 

0 13.3 13.3 0 11.1 11.3 

—.2 

12.4 
12.5 

—.1 

560 12.5 12.5 0 
10.5 

10.5 0 
11.7 11.7 

0 
1120 11.8 11.8 0 

9.9 

9.8 
.1 

11.0 10.9 
.1 

1680 11.1 11.1 0 
9.3 

9.3 0 
10.3 

10.2 

.1 
2240 10.4 10.5 

—.1 

8.8 

8.8 
0 

9.7 9.6 

.1 

2800 9.8 9.8 0 
8.3 

8.3 0 
9.2 

9.0 

.2 

3360 9.2 9.2 0 7.8 
7.8 

0 

8.6 
8.5 

.1 
3920 8.7 8.7 0 

7.3 

7.2 
.1 

8.1 

8.0 .1 
4480 8.2 8.2 0 6.9 6.8 .1 

7.6 
7.6 0 

5040 7.7 7.7 0 
6.5 

6.4 .1 
7.2 

7.2 0 
5600 7.3 7.3 0 

6.1 6.1 
0 

6.8 

6.8 
0 

0 11.7 11.8 

—.1 

560 11.1 11.1 0 
1120 10.4 10.4 0 
1680 9.8 9.8 0 
2240 9.3 9.2 .1 
2800 8.7 8.7 0 
3360 8.2 8.2 0 
3920 7.7 7.7 0 
4480 7.3 7.3 0 
5040 6.8 6.8 0 
5600 6.4 6.4 0 
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3.  Experiments  with  the  Ivory Sphere  and  Long  Suspension. 

m Computed 

■A-m 

Observed 

Am 

C—O Computed 

Am 

Observed 

Am 

C—  0 Computed 

Am 

Observed 

Am 

C—O 

0 36.5 3C.4 .1 38.9 
38.9 0 

38.7 
38.6 .1 

500 21.5 22.0 

—.5 

22.7 22.7 0 
22.6 

22.7 

—.1 

1000 13.5 
13.2 

.3 

14.2 14.3 

—.1 

14.1 
14.3 

—.2 

0 38.9 38.9 0 37.9 37.8 
.1 

37.9 
37.9 0 

500 22.7 22.9 

—.2 

22.2 22.6 

—.4 

22.2 22.4 

—.2 

1000 14.2 14.5 

—.3 

13.9 
14.3 

—.4 

13.9 
14.0 

—.1 

0 39.1 39.2 

—.1 

37.4 37.5 

—.1 

38.5 38.5 0 
500 22.7 22.4 

.3 
21.9 21.7 .2 22.5 

22.3 
.2 

1000 14.2 13.7 

.5 

13.7 12.9 

.8 

14.0 14.2 

—.2 

0 38.4 38.4 0 37.0 37.1 

—.1 

37.3 
37.3 0 

500 22.4 22.0 
.4 

21.7 21.1 .6 
21.9 

21.8 .1 
1000 14.0 14.0 0 13.6 

13.4 
.2 

13.7 
13.9 

—.2 

0 37.2 37.3 

—.1 

36.8 36.8 0 37.1 
36.9 

.2 

500 21.8 21.7 

.1 

21.6 
21.7 

—.1 

21.8 
22.1 

—.3 

1000 13.7 13.8 

—.1 

13.6 
13.4 

.2 
13.7 

13.9 

—.2 

0 34.7 34.7 0 
500 20.5 20.6 

—.1 

1000 13.3 13.0 .3 

1.  Experiments  with  the  Ivory Sphere  and  Short  Suspension. 

m Computed 

Am 

Observed 

A-m 

C—O Computed 

Am 

Observed 

Am 

C—O Computed 

Am 

Observed 

Am 

C—O 

0 12.3 12.3 0 13.6 13.6 
0 13.9 14.0 

—.1 

650 9.3 9.3 0 10.1 10.0 .1 10.3 10.1 

.2 

1300 7.1 7.2 

—.1 

7.6 7.8 

—.2 

7.8 7.8 

0 
1950 5.4 5.7 

—.3 

5.8 5.9 

—.1 

5.9 
5.8 

.1 

2600 4.2 4.3 

—.1 

4.4 4.3 .1 4.5 4.3 .2 

0 13.0 13.1 

—.1 

14.8 
14.9 

—.1 

14.3 14.3 0 

650 9.9 9.9 
0 10.9 

10.9 
0 

10.6 
10.7 

—.1 

1300 7.5 
7.5 

0 
8.2 8.0 

.2 

8.0 8.0 0 

1950 5.7 5.7 0 
6.2 6.0 

.2 

6.0 6.0 0 

2600 4.5 4.5 0 
4.8 

4.5 

.3 
4.6 4.6 

0 

0 12.9 13.1 

— .2 

14.0 14.0 0 J3.2 13.0 .2 

650 
9.6 9.6 0 10.4 10.4 0 19.8 

19.9 

—.1 

1300 
7.2 

7.0 .2 7.8 
8.0 

—.2 

7.3 7.4 

—.1 

1950 5.5 
5.4 

.1 

5.9 6.1 

—.2 

5.6 5.9 

—.3 

2600 4.2 4.1 

.1 

4.5 
4.5 0 4.3 4.4 

—.1 

0 13.3 13.1 

.2 

16.0 16.0 0 16.8 16.8 0 

650 9.8 10.0 

—.2 

11.8 11.8 
0 12.4 12.5 

—.1 

1300 7.4 7.3 

.1 

8.9 
8.8 

.1 9.3 

9.4 

—.1 

1950 5.6 
5.8 

—.2 

6.7 
6.8 

—.1 

7.1 

7.1 0 
2600 4.3 

4.5 

—.2 

5.2 
5.2 

0 5.4 5.5 

—.1 
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4.  Experiments  with  the  Ivory  Sphere  and  Short  Suspension.  —  Continued. 

m Computed Obserred 

-4. 
C—O Computed An Observed 

An C—O Computed 

Am 

Observed 
C—O 

0 16.6 16.6 0 17.8 
18.0 

—.2 

16.3 16.3 
0 

650 12.2 12.1 
.1 

13.0 13.0 
0 

12.0 
12.2 

—.2 

1300 9.2 9.2 0 9.7 9.5 

.2 

9.0 
9.1 

—.1 

1950 7.0 7.0 
0 7.3 7.1 

.2 

6.8 

.7.0 

—.2 

2G00 5.3 
5.5 

—.2 

5.6 5.5 .1 
5.2 

5.2 0 

0 16.1 16.0 .1 
650 11.8 12.0 

  .2 

1300 8.8 9.0 

—.2 

1950 6.7 6.8 

—.1 

2600 5.1 5.1 0 

5.  Experiments  with  the  Full  Cylinder  and  Long  Suspension. 

m Computed 
An 

Observed C—O Computed 

An 

Observed 

■Am 

C—O Computed 

■A-m 

Observed 

Am 

C—O 

0 39.8 39.8 0 41.5 41.2 .3 38.3 38.9 

—.6 

500 35.8 35.9 

—.1 

37.3 37.5 0 34.5 34.3 .2 
1000 32.4 32.2 

.2 
33.6 

33.8 

—.2 

31.2 
30.8 .4 

1500 29.4 29.4 0 30.5 30.7 

— .2 

28.4 
27.8 

.6 

2000 26.7 26.6 .1 27.7 27.8 

—.1 

25.8 25.2 .6 
2500 24.3 24.3 0 25.2 25.3 

—.1 

23.6 22.9 

.7 

3000 26.3 22.0 
.3 

23.0 23.2 

—.2 

21.6 
20.6 

1.0 

3500 20.4 20.3 .1 21.1 21.3 

— .2 

19.8 18.7 1.1 
4000 18.7 19.0 — 3 19.3 19.5 

—.2 

18.2 17.1 1.1 

0 39.4 39.6 — 2 41.0 41.5 

—.5 

41.7 41.8 

—.1 

500 35.5 35.3 

.2 
36.9 36.9 

0 37.5 37.6 

—.1 

1000 32.1 31.9 .2 33.3 32.9 

.4 
33.8 

33.5 

.3 

1500 29.1 29.0 
.1 

30.1 29.9 .2 
30.6 

30.5 .1 
2000 26.5 26.2 .3 27.4 27.1 .3 27.8 

27'.7 

.1 
2500 24.1 24.0 .1 

25.0 24.6 

.4 

25.3 
25.4 

—.1 

3000 22.1 22.0 .1 22.8 22.5 

.3 

23.1 23.2 

—.1 

3500 20.2 20.0 

..2 
20.9 20.6 

.3 

21.2 21.2 0 
4000 18.6 18.3 

.3 
19.1 19.0 

.1 

19.4 19.3 .1 

0 39.5 39.2 .3 40.2 40.3 

—.1 

42.7 42.7 0 
500 35.6 35.6 0 36.2 36.1 .1 

38.3 
38.1 .2 

1000 32.1 32.4 

—.3 

32.7 32.7 0 

34.5 

34.6 

—.1 

1500 29.2 29.4 

—.2 

29.6 30.0 

—.4 

31.2 
31.4 

— .2 

2000 26.5 26.6 

—.1 

26.9 
27.1 

—.2 

28.4 
28.3 

.1 

2500 24.2 24.3 

—.1 

24.5 24.7 

— .2 

25.8 
25.9 

—.1 

3000 22.1 22.3 

  .2 

22.4 22.6 

—.2 

23.6 
23.6 0 

3500 20.3 20.5 

—.2 

20.6 
20.7 

—.1 

21.6 21.6 
0 

4000 18.6 18.7 

—.1 

18.9 18.9 0 19.8 19.9 

—.1 

39 
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5.  Experiments  with  the  Full  Cylinder  and  Long  Suspension.  —  Continued. 

m Computed Observed C—O Computed Observed 

An 
C—O Computed An Observed C—O 

0 42.3 42.5 

—.2 

43.2 43.1 

.1 

42.0 
41.8 

.2 
500 38.0 37.9 

.1 
38.8 38.8 

0 37.7 38.4 

—.7 

1000 34.2 34.0 
.2 

34.9 35.0 

—.1 

34.0 34.0 
0 

1500 31.0 31.1 

—.1 

31.6 31.6 
0 

30.8 30.9 

—.1 

2000 28.1 28.1 0 28.7 
28.6 

.1 28.0 
28.1 

—.1 

2500 25.6 25.5 

.1 
26.1 

26.1 
0 25.5 

25.7 

—.2 

3000 23.4 23.5 

—.1 

23.8 23.9 

—.1 

23.3 23.5 

  .2 

3500 21.4 21.5 

—.1 

21.8 
21.7 

.1 

21.3 21.5 
— 2 4000 19.6 19.4 .2 20.0 

20.0 
0 

19.5 
19.6 

—.1 

0 41.5 41.4 .1 41.4 
41.2 

.2 
41.6 41.4 .2 

500 37.3 37.2 .1 37.2 37.3 

—.1 

37.4 37.4 0 
1000 33.6 33.5 

.1 
33.6 33.6 

0 
33.7 

33.8 

—.1 

1500 30.5 30.5 0 
30.4 30.4 

0 30.5 
30.6 

—.1 

2000 27.7 27.9 

—.2 

27.6 27.6 
0 

27.7 
27.9 

—.2 

2500 25.2 25.3 

—.1 

25.2 25.2 
0 25.3 25.5 

—.2 

3000 23.0 23.1 

—.1 

23.0 23.1 

—.1 

23.1 23.2 

—.1 

3500 21.1 21.3 

—.2 

21.0 21.2 

—.2 

21.1 
21.3 

—.2 

4000 19.3 19.4 

—.1 

19.3 19.1 

.2 

19.5 19.6 

—.1 

0 41.4 41.1 .3 40.5 40.3 

.2 

39.3 
39.4 

—.1 

500 37.2 37.2 0 36.4 36.5 

—.1 

35.4 
35.3 

.1 
1000 33.6 33.6 0 32.9 

33.0 

—.1 

32.0 
32.0 

0 
1500 30.4 30.5 

—.1 

29.8 29.8 0 
29.0 

29.0 0 
2000 27.6 27.7 

—.1 

27.1 27.0 

.1 

26.4 26.4 0 
2500 25.2 25.2 0 24.7 24.6 

.1 

24.1 
24.1 

0 
3000 23.0 23.1 — 1 22.6 22.5 

.1 

22.0 

22.1 

—.1 

3500 21.0 21.2   2 20.7 20.7 0 20.2 20.3 

—.1 

4000 19.3 19.5 — 2 19.0 19.0 0 18.5 
18.5 

0 

0 38.0 38.3 — 3 39.6 39.5 .1 42.0 41.8 .2 
500 34.1 33.5 

.6 
35.6 35.6 0 37.7 37.9 

—.2 

1000 30.9 30.4 .5 32.2 32.1 

.1 

34.0 
34.2 

—.2 

1500 28.0 
27.8 

.2 29.2 
29.3 

— 1 
30.8 31.0 

—.2 

2000 25.5 
25.3 

.2 26.6 215.7 
— 1 

28.0 28.2 — 2 
2500 23.2 23.0 

.2 

24.2 24.3 

— 1 

25.5 25.6 
— 1 3000 21.3 21.3 0 22.2 

22.3 

— 1 23.3 
23.4 

— 1 3500 19.6 19.6 0 20.3 20.4 

— 1 
21.3 21.5 

—.2 

4000 18.0 17.8 .2 18.6 18.7 
— 1 

19.5 
19.6 

—.1 

0 42.1 42.0 .1 41.7 41.7 0 40.6 40.6 0 
500 37.8 37.9 

—.1 

37.4 
37.4 

0 
36.5 

36.6 — 1 
1000 34.1 34.1 0 33.8 

33.9 

—.1 

33.0 
33.0 0 

1500 30.9 30.9 0 30.6 30.6 0 29.9 
30.0 

— 1 
2000 28.0 28.1 

—.1 

27.8 
27.9 

—.1 

27.2 27.2 
0 

2500 25.5 
25.7 

—.2 

25.3 25.5 

—.2 

24.8 24,8 
0 

3000 23.3 23.3 0 23.1 23.2 

—.1 

22.6 
22.7 

—.1 

3500 21.3 21.3 0 21.2 
21.4 

—.2 

20.7 
20.8 

—.1 

4000 19.5 19.5 0 19.4 19.6 

  ,2 

19.0 18.9 .1 
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6.  Experiments  with  the  Full  Cylinder  and  Short  Suspension. 

m Computed 

An 
Observed 

■Am 

C—O Computed 

An 
Observed 

An 
C—O Computed 

An 

Observed 

An 

C—O 

0 12.4 12.45 0 12.1 12.15 0 13.2 13.15 0 
730 11.7 11.6 .1 11.4 11.35 0 12.5 

12.5 
0 

14  GO 11.0 11.0 0 10.8 10.65 

.1 

11.8 11.95 

—.1 

2190 10.4 10.4 0 10.2 10.25 

—.1 

11.2 11.1 

.1 

2920 9.9 9.8 .1 9.6 9.55 .1 
10.5 

10.55 

—.1 

3G50 9.3 9.3 0 
9.1 

9.1 
0 

9.9 
10.0 

—.1 

4380 8.8 8.85 0 
8.6 

8.6 0 
9.4 

9.45 

—.1 

5110 8.3 8.35 0 
8.1 8.15 

0 

8.9 
8.9 

0 
5840 7.9 7.85 0 

7.7 
7.65 0 

8.4 

8.5 

—.1 

0 13.0 13.0 0 12.1 12.05 0 
12.6 12.55 

0 
730 12.3 12.25 0 11.5 11.7 

—.2 

12.0 12.0 
0 

1460 11.6 11.55 0 10.9 
11.05 

—.1 

11.3 11.3 
0 

2190 10.9 11.05 — 1 10.4 10.5 — 1 10.8 10.75 0 
2920 10.3 10.3 

■    0 

9.8 
9.95 

— 1 10.2 10.1 

.1 

3650 9.8 9.75 0 
9.5 9.45 

.1 

9.7 
9.65 

.1 

4380 9.2 9.2 0 8.9 9.05 
— 1 

9.2 
9.25 

0 
5110 8.7 8.8 

—.1 

8.5 
8.6 

—.1 

8.8 

8.8 

0 
5840 8.2 8.2 

0 8.0 8.05 0 8.4 
8.35 

0 

0 12.4 12.4 0 12.4 12.4 0 13.5 

13.5 

0 
730 11.8 11.65 .1 11.8 11.75 0 

12.8 

12.75 

.1 

1460 11.2 11.15 
.1 

11.2 11.2 0 12.2 
12.35 

—.1 

2190 10.6 10.55 
.1 

10.6 10.6 0 11.6 
11.65 

0 
2920 10.1 10.2 

— 1 
10.1 10.05 .1 11.0 

11.0 0 
3650 9.6 9.6 0 9.6 9.55 .1 10.5 

10.55 
0 

4380 9.2 9.15 0 9.2 9.15 .1 10.0 10.0 
0 

5110 8.7 8.7 0 
8.7 8.65 .1 

9.5 9.55 
0 

5840 8.3 8.35 0 8.4 8.3 .1 9.1 
9.1 

0 

0 13.0 12.95 0 13.6 13.6 

"o 

13.9 
14.0 

—.1 

730 12.4 12.4 0 12.9 13.0 

—.1 

13.2 13.2 0 
1460 11.7 11.85 — 1 12.3  . 

12.05 

.2 

12.5 12.65 

—.1 

2190 11.2 11.3 — 1 
11.6 11.5 

.1 

11.9 
11.95 

0 
2920 10.6 10.8 — 2 

11.1 11.0 

.1 

11.3 

11.4 

—.1 

3650 10.1 10.1 0 10.5 10.55 0 10.7 
10.55 .2 

4380 9.7 9.7 0 10.0 10.0 0 10.2 10.25 0 
5110 9.2 9.2 o 

9.5 9.55 0 9.7 9.8 

—.1 

5840 8.8 8.9 

-1  1 9.0    1 

9.0 

o  1 

9.3 
9.2 

.1 
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7.  Experiments  with  the  Empty  Cylinder  and  Long  Suspension. 

m Computed 

A. 
Observed 

-Am 

O—O Computed 

Am 

Observed 

■A-m 

O—O Computed 
Observed 

■Am 

0—0 

0 37.5 37.7 

—.2 

38.2 37.8 A 37.6 37.6 0 
500 28.1 27.7 .4 28.6 

28.8 

—.2 

28.2 
28.3 

—.1 

1000 21.4 21.0 .4 21.8 22.0 

—.2 

21.5 
21.4 

.1 

1500 16.5 16.6 

—.1 

16.8 
16.7 

.1 

16.6 16.7 

—.1 

2000 12.9 13.1 

—.2 

13.1 13.0 .1 
12.9 13.0 

—.1 

0 38.0 37.9 

.1 
39.2 38.8 

.4 

38.9 
38.8 

.1 
500 28.4 28.6 

—.2 

29.3 29.4 

—.1 

29.1 29.2 

—.1 

1000 21.7 21.6 .1 22.3 22.4 

—.1 

22.1 22.3 

—.2 

1500 16.7 16.8 

—.1 

17.2 
17.2 

0 
17.1 

17.2 

—.1 

2000 13.0 13.0 0 13.4 13.4 0 13.3 13.2 .1 

0 40.3 40.4 

—.1 

40.8 40.8 0 38.0 
38.0 

0 
500 30.0 29.9 .1 30.4 30.4 0 28.4 

28.4 0 

1000 22.8 22.5 

.3 
23.1 23.1 0 

21.7 
21.7 0 

1500 17.6 17.8 

—.2 

17.7 17.9 

—.2 

16.7 
16.8 

—.1 

2000 13.7 13.9 

—.2 

13.8 13.9 

—.1 

13.0 13.0 0 

0 37.9 37.9 0 40.2 
40.2 0 

39.9 

40.0 

—.1 

500 28.4 28.4 0 30.0 30.0 0 
29.7 

29.6 

.1 

1000 21.6 21.5 .1 22.8 22.9 

—.1 

22.6 22.5 

.1 

1500 16.7 16.8 

—.1 

17.5 17.6 

—.1 

17.4 17.3 

.1 

2000 13.0 13.0 0 13.6 13.9 

—.3 

13.6 13.6 0 

0 39.8 40.0 — 2 39.2 39.1 .1 
40.7 

40.5 .2 
500 29.7 29.7 0 29.3 29.6 

—.3 

30.3 
30.4 

—.1 

1000 22.6 22.4 .2 22.3 
22.3 

0 23.0 
23.1 

—.1 

2500 17.4 16.7 .7 17.2 
17.2 

0 
17.7 

17.6 .1 

2000 13.5 13.2 .3 13.4 13.4 0 
13.8 

13.7 .1 

0 40.4 
40.4 0 40.1 

40.2 

—.1 

40.4 40.4 0 
500 30.1 30.3 

—.2 

29.9 29.9 0 30.1 30.2 

—.1 

1000 22.9 22.7 .2 22.7 22.7 0 22.9 
22.7 

.2 
1500 17.6 

17.5 .1 
17.5 17.5 

0 
17.6 17.6 0 

2000 13.7 13.7 0 13.6 13.6 0 
13.7 

13.6 

.1 
0 38.9 38.9 0 38.6 38.8 

— 2 
38.7 38.7 0 

500 29.1 
29.1 

0 28.8 28.6 .2 28.9 
28.8 .1 

1000 22.1 21.9 .2 
22.0 

21.9 .1 
22.0 22.2 

—.2 

1500 17.0 17.0 0 16.9 16.9 0 
17.0 17.1 

—.1 

2000 13.3 13.4 — 1 13.2 
13.2 

0 13.2 13.4 

—.2 

0 39.5 39.5 0 
38.1 38.0 

.1 

38.5 
38.5 

0 
500 29.5 29.8 

—.3 

28.5 28.6 

—.1 

28.8 29.0 — 2 
1000 22.4 22.4 0 

21.7 21.8 

—.1 

21.9 21.9 0 
1500 17.3 17.2 

.1 

16.8 
16.6 

.2 

16.9 16.8 .1 
2000 13.4 13.4 

0 13.0 12.9 

.1 

13.2 13.0 

.2 
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7.   Experiments  with  the  Empty  Cylinder  and  Long  Suspension.  —  Continued. 

m Computed Observed 

An C—O Computed 

An 
Observed An c—o\ Computed 

An 
Observed C—O 

0 39.2 38.8 .4 38.5 38.4 .1 39.0 39.0 0 
500 29.3 29.5 

—.2 

28.8 29.0 

— .2 

29.1 29.2 

—.1 

1000 22.3 22.4 

—.1 

21.9 
21.9 

0 22.2 22.2 0 
1500 17.2 17.2 0 16.9 16.9 0 17.1 17.2 

—.1 

2000 13.4 13.6 

—.2 

13.2 18.2 0 13.3 13.4 

—.1 

0 39.9 39.9 0 38.4 38.4 0 38.9 38.9 0 
500 29.8 29.8 0 

28.7 
28.8   1 29.1 

29.2 

—.1 

1000 22.G 22.8 

—.2 

21.9 22.0   1 22.1 
22.1 

0 
1500 17.4 17.6 

— .2 

16.9 17.0   1 17.1 17.1 0 
2000 13.6 13.6 0 13.1 13.1 0 13.3 13.2 

.1 

0 38.6 38.6 0 39.1 39.1 0 
36.8 36.8 

0 
500 28.9 28.9 0 29.2 29.3 

  1 

27.6 27.6 0 
1000 22.0 21.9 

.1 
22.2 22.1 .1 21.1 21.1 0 

1500 16.9 16.8 
.1 

17.1 17.0 .1 16.3 16.3 0 
2000 13.2 13.1 

.1 
13.3 13.1 

.2 

12.6 12.6 0 

0 36.3 36.3 0 38.3 38.3 
0 39.4 39.3 .1 

500 27.3 27.4   1 28.6 
28.7 

  1 
29.4 

29.5 

—.1 

1000 20.8 21.0   2 21.8 21.8 0 22.4 
22.4 0 

1500 16.1 16.1 0 16.8 16.8 0 17.2 17.3 

—.1 

2000 12.5 12.5 0 13.1 13.1 0 13.4 13.5 

—.1 

0 40.1 40.1 0 39.4 39.3 .1 38.8 38.8 0 
500 29.9 29.9 0 29.4 

29.5 

— 1 
29.0 29.4 

—.4 

1000 22.7 22.6 .1 22.4 22.4 0 22.1 22.0 .1 
1500 17.5 17.4 .1 17.2 17.3 

— 1 17.0 17.0 0 
2000 13.6 13.5 .1 13.4 13.5 

— 1 13.2 13.3 

—.1 

0 40.0 40.0 0 38.7 
38.7 

0 38.8 
38.9 

—.1 

500 29.8 30.0 

—.2 

28.9 
28.9 

0 29.0 28.9 

.1 

1000 22.7 22.5 
.2 

22.0 
21.9 

.1 22.1 
22.0 

.1 

1500 17.4 17.3 .1 17.0 
16.9 

.1 17.0 
17.1 

—.1 

2000 13.6 13.6 0 13.2 13.2 0 
13.2 

13.3 

—.1 

0 39.1 39.1 0 38.5 38.5 0 38.7 38.7 0 
500 29.2 29.1 

.1 
28.8 28.8 0 28.9 29.0 — 1 

1000 22.2 22.1 .1 
21.9 

21.8 .1 22.0 22.0 0 
1500 17.1 

17.1 0 16.9 16.9 0 17.0 16.9 .1 
2000 13.3 13.3 0 13.2 13.1 .1 13.2 13.2 0 

0 37.7 37.7 0 38.8 38.8 0 38.1 38.2 

—.1 

500 28.2 28.0 

.2- 

29.0 29.0 0 
28.5 28.5 

0 
1000 21.5 21.5 0 22.1 22.0 

.1 

21.7 21.5 .2 
1500 16.6 16.7 

—.1 

17.0 
16.9 

.1 16.8 16.6 .2 
2000 12.9 12.9 0 13.2 

13.1 
•1 

13.0 
12.9 .1 
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8.  Experiments 

with  tlie Empty  Cylinder  and  the  Short  Suspension. 

m Computed 

An 
Observed 

An C—O 
Computed Observed An C—O Oomputed 

An 

Observed 

An 
C—O 

0 11.4 11.4 0 12.2 12.3 — 1 13.3 13.3 
0 

800 9.5 9.4 

,i 
10.1 10.15 0 11.0 10.95 0 

1600 
7.9 

7.7 2 
8.5 8.45 0 9.1 9.05 0 

2400 6.6 6.5 
1 7.1 

.7.05 
0 

7.6 
7.55 0 

3200 5.5 5.5 .0 6.0 5.9 .1 6.3 6.3 0 
4000 4.7 4.6 .1 5.0 

4.9 
.1 

5.3 
5.3 0 

4800 4.0 
3.9 

.1 

4.2 4.1 .1 4.4 

4.5 

—.1 

0 13.3 13.3 
0 13.4 13.4 0 12.1 12.1 0 

800 11.0 11.1 

—.1 

11.3 11.3 0 
10.2 10.25 0 

1G00 9.1 9.15 0 9.5 9.4 .1 
8.7 

8.65 0 
2400 7.6 7.8 

—.2 

8.0 
8.05 

0 
7.3 

7.4 — 1 

3200 6.3 
6.2 .1 

6.8 
6.7 

.1 

6.2 
6.25 0 

4000 5.3 
5.4 

—.1 

5.8 5.7 
.1 5.3 5.3 0 

4800 4.4 4.45 0 4.9 4.9 0 
4.5 

4.5 0 

0 12.3 12.2 .1 13.0 13.0 0 13.2 13.15 0 

800 10.5 10.5 0 
11.0 

11.0 
0 11.2 11.15 0 

1G00 8.9 9.0 

—.1 

'      9.4 

9.3 
.1 9.5 

9.6 
— 1 

2400 
7.6 

7.85 

  .2 

8.0 8.0 
0 

8.1 8.0 

.1 
3200 

6.5 6.7 

—.2 

6.9 
6.9 0 

6.9 

6.85 
0 

4000 5.6 
5.75 

—.2 

5.9 5.9 0 
5.9 

5.95 0 
4800 

4.8 
4.95 

—.1 

5.0 
5.1 

—.1 

5.1 
5.1 

0 

0 13.0 12.95 0 14.1 14.25 

—.1 

12.9 
12.9 

0 

800 11.0 1I\05 0 
11.9 

11.9 0 10.9 
10.95 

0 
1600 9.4 9.4 0 10.1 

10.1 
0 9.3 

9.15 
.1 

2400 
8.0 

8.05 

—.1 

8.6 
8.05 

—.1 

7.9 

7.85 

0 
3200 6.8 

6.9 

—.1 

7.3 7.35 

—.1 

6.7 6.85 

—.1 

4000 
5.8 

5.85 0 6.2 
5.95 

.3 
5.7 

5.85 

—.1 

4800 5.0 5.0 
0 5.3 

5.25 

.1 
4.9 

4.9 0 

In  the  computation  of  these  values,  there  has  been  no  regard 

to  the  resistance  arising  from  the  wires  of  suspension.  The  dif- 

ference between  the  values  of  H2  may  be  attributed  to  the  uncer- 

tainty of  the  observations,  and  those  of  Hx  may,  perhaps,  be  ac- 

counted for,  in  the  same  way.  The  value  of  ff2  is  nearly  ten 

times  as  great  as  that  which  is  given  by  the  observations  of  Borda 

upon  the  resistance  of  the  atmosphere.  It  must,  therefore,  be 

doubtful,  whether  the  observed  diminution  of  the  arcs  of  vibration 
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of  the  pendulum  is,  wholly  or  principally,  due  to  the  medium  in 

which  it  vibrates,  or  to  some  more  latent  cause.  This  doubt  is 

much  increased  by  the  discussion  of  the  observations  of  Baily. 

534.  In  Baily's  experiments,  various  pendulums,  which  were 
mostly  spheres  and  cylinders,  were  vibrated  in  the  receiver  of  an 

air-pump,  with  the  air  either  at  its  ordinary  pressure,  or  at  the 

small  density  of  about  one  thirtieth  of  an  atmosphere.  For  the 

full  and  exact  description  of  the  pendulums  the  original  memoir 

must  be  consulted,  but  the  following  brief  description  is  sufficient 

for  the  present  purpose.  Numbers  1,  2,  3,  and  4  are  spheres  of 

platina,  lead,  brass,  and  ivory,  all  of  the  same  diameter,  which  is 

somewhat  less  than  1£  inches,  and  of  which  the  weights  with  their 

vibrating  appendages  are,  respectively  9050,  4648,  3217,  and  776  £ 

grains.  Nos.  5,  6,  and  7  are  spheres  of  lead,  brass,  and  ivory,  all 

of  the  same  diameter,  which  is  2.06  inches,  and  of  which  the 

weights  are  respectively,  13019,  9302,  and  2066 i  grains.  Nos.  8 

and  9  are  the  same  spheres  of  lead  and  ivory  with  those  of  Nos.  5 

and  7,  but  suspended  from  a  wire  passing  over  a  small  cylinder 

instead  of  from  a  knife  edge.  In  Nos.  10,  11,  12,  and  13  the 

vibrating  mass  was  a  brass  cylinder,  of  which  the  diameter  of  the 

base  is  2.06  inches,  the  altitude  2.06  inches,  and  the  weight  14190 

grains ;  in  Nos.  10  and  13  the  axis  of  the  cylinder  coincides  with 

that  of  the  pendulum  rod,  but  the  rod  of  No.  13,  which  was  also 

adopted  in  Nos.  11  and  12,  was  a  thick  brass  wire  0.185  inch  in 

diameter,  371  inches  long,  and  weighing  2050  grains ;  in  Nos.  11 

and  12  the  axis  of  the  cylinder  was  horizontal,  in  No.  11  it  was 

perpendicular  to  the  plane  of  vibration,  and  in  No.  12  it  was  in  the 

plane  of  vibration.  No.  14  is  a  cylinder  of  lead,  of  which  the 

diameter  of  the  base  is  2.06  inches,  the  altitude  4  inches,  the  weight 

34500  grains,  and  the  axis  coincident  with  the  rod  of  the  pendulum. 

In  Nos.  15,  16,  17,  18,  and  19  the  vibrating  mass  was  a  hollow  cyl- 
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incler  of  the  same  position  and  external  dimensions  with  No.  14 ; 

in  No.  15  both  ends  were  open;  in  No.  16  the  top  was  open  and 

the  bottom  closed;  in  No.  17  the  top  was  closed  and  the  bottom 

open;  in  No.  18  both  ends  were  closed;  in  No.  19  an  inner  sliding 

tube  was  removed  so  as  to  reduce  the  weight;  and  the  weights, 

with  the  inclosed  air,  were,  respectively,  8497,  8922,  8622,  9048, 

and  7250  grains.  No.  20  is  a  lens  of  lead  2.06  inches  in  diameter, 

an  inch  thick  in  the  middle,  with  a  flat  circumference  of  about  a 

quarter  of  an  inch  wide,  and  a  weight  of  6505  grains.  No.  21  is  a 

solid  copper  cylindrical  rod  of  0.41  inch  in  diameter,  58.8  inches 

long,  and  weighing  16810  grains.  In  Nos.  25,  26,  27,  28,  29,  30,  31, 

32,  33,  and  34,  the  vibrating  masses  were  convertible  pendulums, 

formed  of  plane  bars,  and  they  are  vibrated  successively  with  each 

of  their  points  of  suspension,  which  were  knife  edges;  in  Nos.  25 

and  26  the  bar  was  brass,  two  inches  wide,  three  eighths  of  an  inch 

thick,  62.2  inches  long,  and  weighing  121406  grains;  in  Nos.  27 

and  28  it  was  copper  of  the  same  width  with  the  brass  bar,  half 

an  inch  thick,  6'2.5  inches  long,  and  weighed  155750  grains ;  in 
Nos.  29  and  30,  it  was  iron  of  the  same  width  and  thickness  with  the 

copper  bar,  62.1  inches  long,  and  weighed  140547  grains ;  in  Nos.  31, 

32,  33,  and  34  it  was  a  doubly  convertible  brass  bar,  three  quarters  of 

an  inch  thick,  62  inches  long,  and  weighed  231437  grains.  In  Nos.  35, 

36,  37,  and  38,  a  doubly  convertible  pendulum,  made  of  a  brass  cylin- 
drical tube  of  lh  inches  in  diameter,  56  inches  long,  and  weighing 

81047  grains  was  vibrated  upon  a  knife  edge  with  all  four  of  its 

planes  of  suspension.  No.  39  is  a  mercurial  pendulum.  Nos.  40  and 

41  are  clock  pendulums  in  which  the  vibrating  mass  was  a  leaden 

cylinder  1.8  inches  in  diameter,  13.5  inches  long,  and  weighing 

93844  grains ;  in  No.  40  it  was  suspended  from  a  spring,  by  a  cylin- 
drical rod  of  deal  of  three  eighths  of  an  inch  in  diameter,  and  in 

No.  41  by  a  flat  rod  of  deal  one    inch   wide,  0.14  inch  thick  in  the 
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middle  of  its  width  and  bevelled  on  each  side  to  a  thin  edge,  which 

was  opposed  to  the  direction  of  its  motion. 

In  the  discussion  of  Baily's  experiments,  the  value  of  H%  is 
neglected,  because  it  is  of  small  influence,  and  the  arcs  of  vibration, 

being  usually  given  only  for  the  beginning  and  end  of  the  experi- 
ment, are  just  sufficient  to  determine  one  of  the  quantities  IIX 

and  II2 ;  and  the  values  of  H^  are  not  reduced  to  the  same  density 

of  air.  The  ratio  of  the  value  of  H^  for  the  ordinary  state  of  the 

air  to  its  value  in  the  exhausted  receiver,  varies  from  1.9  to  4.2,  in- 

stead of  being  about  30,  which  it  should  be  if  it  were  proportional 

to  the  density  of  the  air ;  the  value  of  this  ratio  in  the  following 

table  is  expressed  by  J..  The  total  resistance  to  the  motion  of  the 

pendulum,  supposed  to  be  proportional  to  the  velocity  is,  for  the 

unit  of  velocity,  expressed  by  H"  in  the  table ;  and  this  same  re- 
sistance, reduced  to  the  unit  of  weight,  is  expressed  by  H{. 

The  observation  of  the  arcs  of  vibration  in  Baily's  experiments 
is  limited  to  the  initial  and  final  arcs,  and  the  direct  comparison  of 

the  computed  and  observed  arcs  is,  consequently,  quite  unnecessary, 

and  cannot  contribute  to  verify  the  accuracy  of  the  hypothesis  upon 

which  the  computation  is  based.  The  only  two  cases  in  which  an 
intermediate  arc  was  observed  with  Nos.  6  and  14  seem  to  sustain 

the  hypothesis  ;  for  they  differ  from  it  slightly,  but  in  opposite  direc- 
tions. 

The  diversity  of  the  values  of  Hx  indicates  that  the  resisting 

force  of  the  motion  to  the  pendulum  demands  a  new  experimental 

investigation,  conducted  with  a  direct  object  to  its  determination ; 

and  that,  until  such  an  investigation  has  been  made,  the  length  of 

the  seconds  pendulum  must  be  regarded  as  liable  to  an  unknown 
error. 

40 
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Values  of  Hi  in  Bailg's  Experiments  upon  the   Vibrations  of  Pendulums. 

No.  of 

Pendulums. 
Barometer. 

Hx 
Hi 

H? 

J 

1 0.7689 .0673 .000077 .000132 
2.68 

3 0.7646 .0702 .000080 .000384 2.62 

2 0.7523 .0662 .000075 .000250 2.55 
4 0.7660 .0561 .000063 .001272 2.71 

6 0.7638 .0570 .000123 .000204 2.74 

7 0.7630 .0538 .000116 .000864 

'  2.62 

5 0.7644 .0627 .000128 .000]  61 3.18 
9 0.7682 .0589 .000127 .000945 

2.86 8 0.7677 .1021 .000219 .000261 2.92 

10 0.7652 .0651 .000179 .000194 
3.42 11 0.7637 .0558 .000270 .000256 
2.62 12 0.7623 .0603 .000290 .000277 3.33 13 

0.7552 .0571 .000235 .000262 
2.98 

18 0.7491 .0535 .000285 .000484 
3.27 

15 0.7554 .0658 .000350 .000635 
4.10 16 

0.7495 .0595 .000292 .000505 
2.95 17 0.7584 .0558 .000297 .000531 3.39 

14 0.7747 .0592 .000315 .000140 4.22 
19 0.7620 .0510 .000272 .000578 3.33 

20 
0.7620 .0656 .000065 .000156 

2.09 21 0.7575 .0661 .000742 .000682 
2.72 

25 0.7522 .0789 .005606 .000333 
3.32 26 0.7465 .0756 .004782 .000319 
3.74 

31 0.7522 .1555 .003666 .000245 
3.32 32 0.7520 .1581 .003673 .000245 3.55 34 

0.7529 .1661 .003772 .000251 3.72 33 0.7535 .1417 .003480 .000232 3.13 

35 0.7595 .0739 .003091 .000589 3.48 

36 0.7627 .0660 .002763 .000526 
3.31 37 0.7577 .0701 .002931 .000558 
3.39 38 0.7564 .0659 .002760 .000526 2.97 

39 0.7622 .001396 .000209 1.87 

41 0.7573 .0664 .001260 .000207 2.52 
40 0.7589 .0769 .001299 .000213 2.39 
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Values  of  Hi  in  Baily's  Experiments  upon  the   Vibrations  of  Pendulums.  —  Continued. 

No.  of 

Pendulums. 
Barometer. 

Hx 

m 

H{' 

J 

1 0.0288 .0251 .000028 .000049 2.68 

3 0.0294 .0267 .000031 .000146 2.62 
2 0.0265 .0259 .000030 .000098 2.55 

4 0.0347 .0284 .000024 .000470 
2.71 

6 0.0268 .0285 .000044 .000074 2.74 

7 0.0270 .0282 .000044 .000330 2.62 
5 0.0290 .0275 .000042 .000050 3.18 
9 0.0360 .0282 .000044 .000331 2.86 
8 0.0299 .0348 .000075 .000089 2.92 

10 0.0239 .0190 .000052 .000057 3.42 
11 0.0478 .0213 .000103 .000098 2.62 
12 0.0348 .0182 .000088 .000083 3.33 

13 0.0370 .0192 .000092 .000089 2.98 
18 0.0300 .0164 .000087 .000148 3.27 

15 0.0271 .0164 .000097 .000148 4.10 
16 0.0266 .0186 .000099 .000171 2.95 
17 0.0362 .0165 .000088 .000157 3.39 
14 0.0298 .0139 .000074 .000033 

4.22 

19 0.0305 .0154 .000083 .000174 3.33 

20 0.0305 .0313 .000031 .000074 
2.09 

21 0.0288 .0244 .000274 .000251 2.72 

25 0.0313 .0238 .001505 .000101 3.32 

26 0.0325 .0202 .001277 .000086 3.74 

31 0.0414 .0469 .001105 .000074 
3.32 32 0.0391 .0439 .001034 .000069 
3.55 34 0.0410 .0431 .001014 .000067 3.72 

33 0.0463 .0472 .001111 .000074 3.13 

35 0.0384 .0213 .000888 .000170 3.48 
36 0.0367 .0200 .000834 .000160 

3.31 37 0.0422 .0206 .000859 .000166 
3.39 38 0.0412 .0222 .000930 .000178 2.97 

39 0.0477 .000747 .000112 1.87 

41 0.0457 .0263 .000498 .000083 2.52 
40 0.0434 .0320 .000543 .000089 2.39 
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THE  TAUTOCHRONE. 

535.  The  consideration  of  the  pendulum  leads,  directly,  to 

the  investigation  of  that  curve,  upon  which  the  duration  of  the 

vibration  is  independent  of  the  length  of  the  arc  of  oscillation. 

Such  a  curve  is  called  a  tautochrone,  and  is  readily  determined  when 

the  body  is  only  subject  to  the  action  of  fixed  forces. 
536.  If  the  force  which  acts  in  the  direction  of  the  motion 

of  the  body  is  denoted  by  S,  the  equation  of  its  motion  is 

In  the  case  in  which  JS  is  a  function  of  s,  let  s0  denote  the 

point,  at  which  the  velocity  vanishes,  or  the  extremity  of  the  arc 
of  vibration.     Hence 

and  if  the  origin  of  coordinates  is  at  the  point  of  maximum  velocity, 

the  time  of  vibration  is  determined  by  the  equation 

Tz=z  (     
 y/2 

o 

If  h—-, v 

if  £2  is  a  function  of  s  expressed  by  £2S,  and  if  s  is  written  instead 
of  sQ,  the  value  of  T  becomes 

T—  t       s^2 
M  —Jkij(siA—a,y 

0 

In  order  that  the  special  value  of  the  arc  may  disappear  from 
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this  integral,  it  is  obvious  that  S2S  has  the  form 

S2S  =  A  —  Bs2, 

which  reduces  the  value  of  T  to 

JksJBsl(l  —  K2)        \  2B' 

The  tangential  force  along  the  curve  is,  therefore, 

S—DJl  =  —  2Bs. 

537.  If  F  denotes  the  actual  force,  which  acts  upon  the  body 

in  the  direction  of/,  the  preceding  equation  gives  for  an  equation  of 
the  tantochrone 

Fcos{  =  —  2Bs=FBsf, 
or 

A—Bs2=fF. 

538.  In  the  case  in  which  the  body  is  restricted  to  move  upon  a 

curve  ivhich  rotates  uniformly  about  a  fixed  axis,  the  equations  and 

notation  of  §468  combined  with  the  previous  section,  give  for 

the  equation  of  the  tantochrone 

A  —  Bs2  =  ±a2u2, 

which  may  assume  the  form 

s2    .     u?   , 

in  which  a  and  b  are  constants. 

539.  When  the  revolving  curve  is  a  plane  curve,  and  situated  in 

the  same  plane  with  the  axis  of  revolution,  the  notation 

b  =  a  cot  i 

a  sin  6  =  a  sin  cp  sm«, 
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and  that  of  elliptic  functions  give 

u  =  b  cos  6 , 

s  =  -^—.  ̂ (p  —  b  cos  i^i(f; 

and  if  r  is  the  inclination  of  the  curve  to  the  axis  of  rotation,  its 
value  is 

sin  t  =  —  cot  i  tan  £ . 

The  maximum  of  u  is  b,  but  its  least  value,  corresponding  to 

or  6  =  ip  i, 

is  u  =  b  cos  i ; 

and  the  corresponding  value  of  s  is 

s  =  J^asmi. 

The  curve  consists  of  several  branches,  which  form  cusps  by  their 

mutual  contact  at  their  extremities,  and  it  resembles  the  cycloid  in  its  general 
character. 

540.  In  the  case  of  a  heavy  body  moving  upon  a  plane  vertical  curve, 

let  v  denote  the  angle  which  the  radius  of  curvature  ()  makes  with 

its  horizontal  projection,  and  the  equation  (317u)  gives 

F 
s  =  —  ̂ cosv, 

F    . 

which  is  the  equation  of  the  cycloid  referred  to  its  radius  of  curva- 

ture and  angle  of  direction,  so  that  the  cycloid  is  the  tautochrone  of  a 

free  heavy   body   in   a   vacuum.       The  same  curve,  drawn   upon  the   de- 
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veloped  surface,  is  the  taatochrone  of  a  heavy  body,  moving  upon  a  vertical 

cylinder. 

541.  Every  curve  may  be  regarded  as  being  upon  the  surface 

of  its  vertical  cylinder  of  projection ;  and,  therefore,  the  tautochrone 

of  a  heavy  body  moving  in  a  vacuum  upon  any  surface  ivhatever,  is  the 

intersection  of  the  surface  tvith  such  a  vertical  cylinder,  that  the  intersection 

is  a  cycloid  upon  the  developed  vertical  cylinder.  The  determination  of 

the  tautochrone  upon  any  surface  is  thus  reduced  to  a  problem  of 

pure  geometry.  If  the  axis  of  z  is  the  upward  vertical,  and  if  z0  is 

the  height  of  the  lowest  point  of  the  curve  above  the  origin,  the 

equation  (317i6)  becomes,  in  the  present  case, 

542.  If  a  heavy  body  is  restricted  to  move  upon  a  cylinder  of  which 

the  axis  is  horizontal,  and  of  which  the  equation  of  the  base  is 

Q1  =  na  cos  7^  sin"-1^, 

in  which  vx  is  the  angle,  which  the  radius  of  curvature,  denoted  by 

q1}  makes  with  the  upward  vertical ;  and  when  the  cylinder  is  devel- 

oped into  a  vertical  plane,  if  y  is  the  height  of  the  moving  body 

above  the  horizontal  line,  which  corresponds  to  the  lowest  side  of 

the  undeveloped  cylinder,  the  value  of  y  is 

y  ■=.  a  sin  n  vx . 

The  force  of  gravity,  resolved  in  a  direction  tangential  to  the 

cylinder,  is 

gsmv1=g^; 

so  that  the  present  problem  corresponds  to  that  of  a  body  moving  in  a  ver- 
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tical  plane,  and  subject  to  a  force  which  is  fixed  in  direction,  and  propor- 

tional to  some  poiver  of  the  height  above  a  given  level.  The  equation 

(31913)  gives  for  the  equation  of  the  tautochrone 

B 
»+i*  —   na    Mfl+i) - s2 4- z0=  j  (sin vx  Dv  y)  =  — ^—  a sin"+1  v,  =  -^—  \y-\ 

543.  If  r  denotes  the  angle  which  the  radius  of  curvature  (q) 

of  the  tautochrone  makes  with  the  upward  vertical  in  the  developed 

cylinder,  the  equation  (31714)  gives 

2B 
sin  v  smv,=- — s, 9 

which,  substituted  in  (3205),  reduces  the  equation  of  the  tautochrone  to 

B  o   .  n         /25SV+1 
-  sf-\-  z0  =  — j—  a  I  —r—  ) 
g        '  n  -\- 1      v?  sm  y/ 

544.  When  z0  vanishes  in  the  problem  of  the  preceding  sec- 
tion, the  equation  of  the  tautochrone  becomes 

,    .    ttl  /      nag      /yY±± 

n  +  l  z    .    _«. or  C  =  _     -osin"-1^ l 

in  which 

(«)-,f=&r©" 
so  that  ̂ e  tautochrone  on  the  developed  cylinder  of  §  542  &  of  ̂ e  same 

trigonometric  class  of  curves  with  the  base  of  the  cylinder,  when  it  passes 

through  the  loivest  side  of  the  undeveloped  cylinder.  This  case  is  impos- 

sible, when  n  is  included  between  positive  and  negative  unity ;  for 

when  n  is  negative  and,  independently  of  its  sign,  less  than  unity,  s 

becomes  infinite  when  y  vanishes,  but  when  n  is  positive  and  less 
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than  unity,  the  derivative  of  (32019),  which  is 

DljS  =  cosec  v  =  I  Jjf\£)~^r, 

gives  the  impossible  result  that  cosec  v  vanishes  with  y. 

545.  The  differential  equation  of  the  tautochrone,  in  the  case  of  § 

542,  referred  to  rectangular  coordinates  upon  the  developed  cylinder,  is 

readily  obtained  from  the  equations  of  §  542,  which  give 

^(lM(I)1+i-^)(^+i)> 
in  which 

7.2        9    "  +  1 
/r   IB    na    ' 

and  the  axis  of  x  is  horizontal. 

In  the  case  of  §  544,  in  which  s0  vanishes,  this  equation  becomes 

D^+l=P^-\ 
546.  In  the  case  in  which  n  is  unity,  that  is,  in  ivhich  the  base 

of  the  cylinder  is  a  cycloid,  the  equation  of  the  tautochrone  on  the  developed 

cylinder,  becomes 

When  s0  vanishes,  this  curve  is  reduced  to  a  straight  line,  but 

in  all  other  cases,  its  form,  if  it  is  infinitely  extended  in  the  plane 

of  the  developed  cylinder,  resembles  the  hyperbola.  By  the  adop- 
tion of  the  notation 

.  „  .       2aB 
sir  I  =   , 

9 

y=  y/(2as'0)sec9, 41 
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and  that  of  elliptic  functions,  its  equation  may  be  expressed  in  the 
forms 

sj9-^  (cos  6  tan  9  +  %  y  —  84  9) . 

547.  .7^  «  /^a^  £o<^/  /s  restricted  to  move  upon  a  surface  of  revo- 

lution about  a  vertical  axis,  of  which  the  equation  of  the  meridian 

curve  is  that  of  (31917).  If  y  is  the  distance  of  the  body  on  the 

meridian  curve  from  the  lowest  point  of  the  surface,  the  value  of 

y  is  given  by  the  equation  (31925),  and  the  force  of  gravity,  resolved 

in  a  direction  tangential  to  the  meridian  curve  is  expressed  by 

(31929),  so  that  the  present  problem  resembles  that  of  a  body 

moving  in  a  plane,  and  subject  to  a  force,  which  is  directed 

towards  a  fixed  point  in  the  plane,  and  is  proportional  to  some 

power  of  the  distance  from  that  point.  The  equation  (317k)  of  the 

tautochrone,  gives 

7?  ,2       9    y     —  2/0 

in  which  m  is  the  reciprocal  of  n,  and  y0  the  value  of  y  at  the  lowest 

point  of  the  tautochrone. 

548.  When  m  vanishes,  the  surface  of  revolution  is  a  right 

cone,  and  the  equation  (322]9)  becomes 

Bs2  =  g(y—y0). 

By  means  of  the  notation 

sin24  =  y(>^-  y0), 

sec  p  =  1  -j   -; 
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the  angle  (ep)  which  y  makes  with  y0  in  the  developed  cone  is  given 

by  the  formula 

tan  1(6  +  h<p)  tan  }  0]  =  ̂ ^ ; 

so  that  ̂ e  ̂ ofor  equation  of  this  tautochrone  upon  the  developed  cone  is 

expressed  by  the  combination  of  (32228)  and  (3233). 

549.  When  y0  vanishes,  ft  also  vanishes,  and  the  equation 

(3233)  becomes 

fl  +  *9>  +  cotfl=0. 

550.  When  m  is  unity,  the  surface  of  revolution  is  cycloidal 

and  the  equation  (322J9),  becomes 

aBs2  =  ig(y2—y20), 

which  becomes  the  meridian  curve  itself,  when  y0  vanishes. 

551.  In  the  case  given  in  (322u),  of  a  body  moving  in  a  plane 

and  subject  to  a  force,  ivhich  is  directed  towards  a  fixed  point  in  the  plane, 

and  is  proportional  to  some  poiver  (in)  of  the  distance  from  that  point, 

the  equation  of  the  tautochrone  may  be  given  in  the  form 

s2  =  A(rm+1  —  r0m+1), 

in   which   the  attracting  point   is   the  origin  of  polar  coordinates. 

The  polar  differential  equation  is 

552.  If  the  attraction  or  repulsion  of  the  point  had  been  any  function 

whatever  of  the  distance  from  the  origin,  the  equation  of  the  tautochrone 

would  have  assumed  the  form 

sz=Fr  —  Fr0, 
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in  which  F  denotes  the  function  of  which  the  derivative  expresses 

the  given  law  of  attraction.  This  equation  may  therefore  assume 
the  form 

x2  -4- y2  =  r2  =  Si, 

in  which  S±  is  a  function  of  JS.  If  then  v  is  the  angle  which  the 

radius  of  curvature  makes  with  the  axis  of  x,  the  derivatives  of 

this  equation  are 

2  x  sin  v  —  1y  cos  v  =  JS[, 

(2#cosv  -J-  2y  sinv)  Dsv  =  8" — 2  ; 
whence 

2xDsv  =  S[  sin  vD,v-\-  (S^  —  2)  cos  v, 

2yDsv=  —  8[  cos  v  Dsv  -f  {S"  —  2)  sin y, 

4  81  Ds  v2  =  S?  Dsv2  -f  ( tf"  —  2)2, 

,2
 

„  2    n  c.2   ^   !        '    Q' 
V        X/i;i       Tgtf   2)2         2' 

which  is  the  equation  of  the  tautochrone  expressed  in  terms  of  the  radius 

of  curvature  and  the  arc. 

553.  The  polar  differential  equation  of  the  tautochrone  in  the  case 

of  the  preceding  section  is 

r  ury  -f-i  —  Fr_Fro, 

which  is  the  same  equation  with  that  which  is  given  by  Puiseux. 

554.  The  derivative  of  (32416)  relatively  to  v  is 

2Bvq  =  K, 

so  that  the  elimination  of  s  between  (32416)  and  (32427)  gives  the 

differential  equation  of  this  tautochrone  in  terms  of  the  radius  of  curvature 

and  the  angle  of  its  direction. 
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555.  In  the  case  of  §  552,  when 

$,  =  a  s  -J-  b } 

the  value  of  S2  is 

JS1  =  as-\-b  —  4  a2. 

The  equation  (32427)  becomes  therefore 

and  the  equation  of  the  tautochrone  is 

g=  \  av , 

which  is  that  of  the  involute   of  the   circle.     This  case   corresponds  to 
that  in  which  the  law  of  the  central  force  is  of  the  form. 

Br{f  —  t*). 

556.  In  the  case  of  §  552,  when 

%  =  a  (s  +  bf, 

the  value  of  JS2  is 

S2- 

=  f=.m2{s-\-bY: 

in  which 9             a 

1  — a7 so  that  a  must  be  positive    and  less  than  unity.       The   equation   of 

the  tautochrone  is,  then, 

Q  =  Eemv, 
ivhich  is  that  of  the  logarithmic  spiral.     This  case  corresponds  to  that 
in  which  the  law  of  the  central  attraction  is  of  the  form 

r  —  rn 
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that  is,  in  which  the  force  is  proportional  to  the  distance  of  the  body  from 

the  circumference  of  the  circle  described  from  the  origin  as  the  centre  with 

a  radius  equal  to  that  of  the  initial  position  of  the  body.  This  case  is 

discussed  by  Puiseux. 

557.  In  the  case  of  §  552,  ivhen  the  force  is  proportional  to 

the  distance  from  the,  origin.  The  equation  (32331)  assumes  the 
form 

12 

which,  with  the  value  of  m  in  (32522),  reduces  Sx  and  iS2  to 

r2
 

0'
 

#!  =  as2,  -J- 

The  equation  of  the  tautochrone  is,  therefore, 

of  which  the  integral  is 

o  —  ,    -     Qos(mv) ^  1  —  a  v        ' 

in  which  the  arbitrary  constant  is  determined  so  that  v  may  vanish 
with  s. 

The  second  derivative  of  this  equation  gives,  for  the  radius  of 
curvature  of  the  second  evolute  of  the  tautochrone 

q  =  m*  q 
so  that  the  second  evolute  is  similar  to  the  tautochrone  itself. 

In   the   case   in   which  m  is  real,  which  corresponds  to  that   in 
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which  a  is  positive  and  less  than  unit}*,  this  curve  runs  off  to 
infinity  in  each  direction,  with  a  constantly  increasing  radius  of 
curvature. 

In  the  case  in  which  m  is  imaginary,  the  substitution  of 

9.  9 —  n=  in  , 

reduces  the  equation  of  the  tautochrone  to  the  form 

?  =  r5_cos(nv), 

which  is  the  equation  of  an  epicycloid.  The  epicycloid  is  formed  by  the 

external  rotation  of  one  circle  upon  another,  when  n  is  less  than  unity,  in 

which  case  a  is  negative  and  the  force  is  repulsive ;  but  the  epicycloid  is 

formed  by  internal  rotation,  when  n  is  greater  than  unity,  which  corresponds 

to  the  case  when  a  is  positive  and  greater  than  unity.  In  either  of  these 

cases,  the  initial  velocity  must  not  be  more  than  sufficient  to  carry 

the  body  to  either  of  the  cusps. 

In  the  case  in  ivhich  a  is  infinite,  the  tautochrone  is  reduced  to  a 

straight  line. 

The  example  of  this  section  is  discussed  by  Puiseux. 

558.  The  example  of  the  preceding  section  embraces  the  case 

of  any  force,  which  is  a  function  of  a  distance  from  the  origin,  in  the 

immediate  vicinity  of  the  point  of  greatest  velocity.  The  form  of 

the  tautochrone,  near  the  point  of  greatest  velocity,  in  the  example  of 

\  552,  is  typified,  therefore,  by  the  epicycloid,  or  by  the  curve  of  equa- 
tion (3262i). 

559.  The  investigation  of  the  tautochrone  in  a  resisting 

medium  is  postponed  to  the  general  case  of  the  chronic  curves. 
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THE     BRACHYSTOCHRONE. 

560.  The  curve  upon  which  a  body  moves  in  the  least  pos- 

sible time  from  one  given  point  to  another,  is  called  the  hrachys- 
tochrone. 

561.  The  investigation  of  the  general  case  of  a  brachysto- 
chrone  which  is  confined  to  any  surface  or  limited  by  any  condition, 

may  be  conducted  by  means  of  rectangular  coordinates.  The  time 

of  transit  from  the  first  to  the  last  of  the  given  points  may  be  ex- 

pressed by  the  equation 

Jx      V which  is  to  be  a  minimum.     This  condition  gives,  for  each  of  the 

other  axes,  the  equation 

D„(^)-D,Dr(S-l)  =  0. 

562.  When  the  body  is  only  subject  to  the  action  of  fixed 

forces,  v  does  not  involve  either  y'  or  z ',  and  the  preceding  equation 
becomes 

D„v 

£+2>.(=r)=o, 
or  by  (31617), 

2>,i2  +  t^D.(^")=0. 

563.     If  the  plane  of  xy  is  assumed,  at   each  instant,  to  be 

that  in  which  the  body  moves,  and  if  the  axis  of  y  is  taken  normal 
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to  the  path  of  the  body,  the  preceding  equation  becomes,  if  q  ex- 

presses the  radius  of  curvature  of  the  path 

Q 
 J 

so  that  the  centrifugal  force  of  the  bod//  is  equal  to  the  normal  pressure, 

and  the  ivhole  pressure  upon  ihe  brack// stochrone  is  double  the  centrifugal 

force.     This  proposition  was  discovered  by  Euler. 

564.  When  the  normal  pressure  vanishes,  the  radius  of  curvature 

is  infinite,  which  corresponds  in  general  to  a  point  of  contrary  flexure. 

When  there  is  no  force  acting  upon  the  body  throughout  its  path,  the 

brachystochrone  is  reduced  to  a  straight  line. 

565.  Any  conditions  to  which  the  path  must  be  subject, 

whether  elementary  such  as  that  it  is  confined  to  a  given  sur- 

face, or  integral  such  as  that  its  whole  length  is  given,  must  be 

combined  with  the  general  condition  of  brachystochronity  by  the 
usual  methods  of  the  calculus  of  variations. 

566.  If  the  only  force  ivhich  acts  upon  the  body  is  directed  to  a  given 

point,  and  if  the  path  is  subject  to  no  conditions,  let  the  plane  ofxz  be 

assumed  to  be  that  which  passes  through  the  centre  of  action  and 

the  initial  element  of  the  path.  In  this  case  the  equation  (32827) 

gives 
cosf=0,    l  =  in, 

or  the  brachystochrone  is  contained  in  a  plane  which  passes  through  the 

centre  of  action. 

567.  The  preceding  case  includes  that  in  which  the  centre 

of  action  is  removed  to  an  infinite  distance,  so  that,  in  the  case  of 

parallel  forces,  ihe  free  brachystochrone  is  contained  in  a  plane,  ivhich  is 

parallel  to  the  direction  of  the  forces. 

568.  When  the  body  is  acted  upon  by  no  forces,  or  only  by  those 

which  are   normal  to  its  path  and  do  not  tend  to  change  its  velocity,  the 

42 
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equation  (32813)  shoivs  that  the  br  achy  stochr  one  is  the  shortest  line  which 

can  be  drawn  under  the  given  conditions. 

569.  When  the  force  is  directed  towards  a  fixed  centre,  the 

equation  (3299),  combined  with  (31618)  gives,  if  the  centre  is  adopt- 
ed as  the  origin 

Z>,.Q  2 

Si  —  »Qo         Q  sin 
i 

If  p  is  the    perpendicular  let  fall  from  the   origin  upon  the 

tangent  to  the  curve,  this  equation  becomes 

Z>,.Sl      _2Drp__2Drp 

Si  —  Si0         r  sin  j  2}      ' 

of  which  the  integral  is CD 

which  is  the  equation  of  the  brachystochrone  referred  to  the  radius  vector 

and  the  perpendicular  from  the  origin  upon  the  tangent  as  the  coordinates. 

This  form  is  given  by  Euler. 

570.      When  the  force  in  the  preceding  case,  is  proportional  to  the 

distance  from  the  origin  so  that  il  has  the  form 

O  — 

ar 

the  equation  (33014)  becomes 

of  which  the  derivative  gives 

P 
s       P\ 

If  v   is  the   anode  which  o  makes  with  the  fixed  axis,  the  de- 
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rivative    of   this    last    equation    gives,    by    means  of  the  preceding- 

equation 

•which  becomes 

if 
2        1 — a  pi 

a  pi 

The  integral  of  this  equation  is ma  pi 
■,  Sin  (mv) 

so  that  its  second  evolute  is  similar  to  the  br  achy  stochr  one  itself. 

When  m  is  real,  which  corresponds  to  the  case  of  a  repulsive 

force,  and  ap\  less  than  unity,  this  br achy stochr one  is  a  spiral  which  has 

a  cusp  at  the  point  at  which  v  vanishes. 

When  m  is  imaginary,  the  substitution  of  (3275)  reduces  (331n) 
to  the  real  form 

p  =   7,  sin  (n  v) 
s  n  a  p\  v        ' 

so  that  in  this  case,  the  brachystochrone  is  an  epicycloid  which  is  formed  by 

internal  rotation  ivhen  the  force  is  attractive,  and  by  external  rotation  when 

the  force  is  repulsive.     This  case  is  given  by  Euler. 

571.  When  the  forces  are  parallel,  the  equation  (3293)  gives,  if 

the  axis  of  z  is  supposed  to  be  in  the  direction  of  the  forces 

=  2"cot*.2>" Si — £20       Q$h 

s  -*-^  z  s  ? 

of  which  the  integral  is 

12  —  i20=  a  sin2*, 
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in  which  a  is  an  arbitrary  constant,  and  this  is  the  equation  of  the 

br achy stochr one  referred  to  the  coordinates,  ivhich  are  z  and  the  inclina- 

tion of  the  curve  to  the  axis  of  z ;  and  the  equation,  referred  to  o 

and  I  as  coordinates,  is  obtained  by  eliminating  z  between  (33127)  and 

(33131). 

572.     In   the   case  of  a  constant  force,   the    preceding   equation 
assumes  the  forms 

g{z  —  Sq)  =  a  sin 

2a 

2z 

5J 

-sin 

so  that,  in  this  case,  the  br achy stochr one  is  a  cycloid. 

573.  When  the  parallel  forces  are  proportional  to  the  distance  from 

a  given  line,  which  may  be  adopted  for  the  axis  of  x,  the  value  of 
12  has  the  form 

12  =  bz2; 

whence  the  equation  of  the  br  achy  stochr  one  is 
r a  sin  % 

?  —  V  (V 4  +  ab  sin2 1)  ' 

When  the  force  is  repulsive,  or  luhen  it  is  attractive,  but 

a 

this  curve  consists  of  branches,  ivhich   are  united  by  cusps,  and  resemble 

the  cycloid  in  general  form  ;  but  token  the  force  is  attractive,  and 

^<\l- 

a 

this  curve  consists  of  branches   which  are  still  united  by   external  cusps ; 

but  the  middle  point  of  each  branch  is  upon  the  axis  of  x,  and  is  a  point 
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of  inflexion,  and  the  interval  between  two  successive  points  of  inflexion,  ex- 

pressed by  elliptic  integrals,  is 

v^(-f)W*")-^(*«)]i 
in  -which 

,       h 

'  a 

In  the  case  of  the  attractive  force,  and 

i      a 

the  equation  of  the  br achy stochr one  becomes 

9  =  g0tanzs5 

which  consists  of  tiuo  infinite  branches  joined  by  an  external  cusp,  and  the 

axis  of  x  is  an  asymptote  to  each  of  the  branches. 

574.  When  the  body  is  subjected  to  move  upon  a  given  sur- 

face, the  force  by  which  it  is  retained  upon  the  surface  is  perpen- 

dicular to  its  path,  and  must  be  united  with  the  second  member  of 

equation  (3293).  Hence  it  follows  that  the  centrifugal  force  of  the 

body  in  the  direction  of  the  tangent  plane  to  the  surface,  upon  ivhich  it  is 

confined,  is  equal  to  the  normal  force  which  acts  in  this  plane  normal  to 

the  brachystochrone. 

At  the  beginning  of  the  motion  when  the  velocity  is  zero, 

there  is  no  centrifugal  force,  so  that  the  initial  direction  of  the 

brachystochrone  upon  the  surface  coincides  with  thai  of  the  tangential 

force. 
575.  If  the  first  and  last  points  of  the  brachystochrone  are 

so  situated  upon  the  given  surface,  that  a  line  can  be  drawn 

through  them,  which  coincides  throughout  with  the  direction 

of  the  tangential  force  to  the  surface,  this  line  is  the  brachysto- 
chrone. 



—  334  — 

Hence,  the  brach/jstochrone  upon  the  surface  of  revolution  is  the 

meridian  line,  ivhen  both  its  extremities  are  upon  the  same  meridian  line, 

and  the  force  is  directed  to  a  point  upon  the  axis  of  revolution,  or  is  parallel 
to  this  axis. 

576.  In  the  general  case  of  a  surface  of  revolution  and 

a  force  which  is  directed  to  a  point  upon  the  axis  of  revo- 
lution, let 

a  denote  the  arc  of  the  meridian  curve  measured  from  the  pole, 

u   the  perpendicular  from  the  surface  upon  the  axis, 

or  the  radius  of  curvature  of  the  projection  of  the  bracrrystochrone 

upon  the  tangent  plane  to  the  surface, 

and  the  proposition  (33320)  is  expressed  by  the  equation 

-=DM  tan  1 
Q T 

which  gives 

r 

But  the  equations 

DsSl       _Z>s(v2)   2  cot? 
Si  —  $20  v2  Qt 

D5u  =  cos  "  =  cos  1  cos  Z, 
1         sin?  cos  Z 

D  a- 

Vr 
give T~\      /  ■         ,r\  U   C0 

Ds(u  smf)  = 

Qr     '
 

and  if  A  is  an  arbitrary  constant, 

Ds  log  v  =  Ds\og  (u  sin  z) 

Av=  usm°=u2  Dsux 

Av2=uv  sin Z  =  u2 Dt " 

so   that   the   area   described  by   the  projection  of  the  radius  vector  upon 



—  335  — 

the  plane   of  xy  is  proportional  to   the  square    of  the   velocity    of  the 
body. 

577.     The  equation  (33428)  gives 

D„s  =  sec ' 
Sl  (u-—A-ir)        s/  [u2  —  2  A2  {SI  —  J20)] ' 

tan?_  Av  _A     I        2{Sl—Sl0) j,    „   tan?    Av    A     I         2 
°x  u       ~u\J{u1  —  A2v'2)        u\  v?  — 

2A2{tt  —  Sl0) 

578.     If  <3  is  the  angle  which  the  radius  rector  makes  with  the 

axis,  the  preceding  values  give 

<t>    ~  V  «2— :2A2{Si  —  si0y 

D   U__A     /2(Si-SZ,>)[f*+(Ptry] 
"**  —  u\        u2  —  2A'(S2  —  Sl0)       ' 

When  the  forces  are  parallel  these  equations  give 

u  D.a 
D.s 

\j[_u2—2A2{Sl  —  Si.i))'\ 

D  «  =  ̂ _«.  I         2(-^-^) 2  A2  {Si  —  Siu) 

579.     Upon  the  surface  of  revolution  which  is  determined  by 

the  equation 
Bv  =  u 

in  which  B  is  an  arbitrary  constant,  the  value  of  %  is  by  (33 428 ) 

constant,  so  that  upon  this  surface  the  br achy stochr one  makes  a  constant 

angle  with  the  meridian  curve.     In  the  case  in  which 

A  =  B 

the  brachystochrone  becomes  perpendicular  to  the  meridian,  and  is 

a  small  circle,  of  which  the  plane  is  horizontal. 

Whatever  is  the  value  of  B,  the  point    at  which  v  vanishes, 
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coincides  with  that  at  which  u  vanishes,  so  that  at  the  pole  of  this 

surface  the  velocity  vanishes. 

Upon  any  other  surface  of  revolution  about  the  same  axis,  the  incli- 

nation of  the  brachystochrone  to  the  meridian  arc  is  the  same  with  the 

corresponding  inclination  upon  the  surface  of  equation  (33522),  at  the  com- 

mon circle  of  intersection  of  these  tioo  surfaces.  Hence  the  limit  of  the 

brachystochrone  upon  a  given  surface  of  revolution  is  its  circle  of  intersection 

with  the  surface  of  equation 
Av  =  u, 

and  the  brachystochrone  extends  over  that  portion  of  the  given  surface, 

which  is  exterior  to  the  given  surface,  by  ivhich  the  limits  are  thus  defined. 

580.  In  the  case  of  a  heavy  body,  the  surface  of  equation 

(33522)  is  a  paraboloid  of  revolution.  When  the  velocity  of  a  heavy  body 

upon  any  paraboloid  of  revolution,  of  ivhich  the  axis  is  vertical  and  directed 

doivnivards,  is  fust  sufficient  to  carry  it  to  the  vertex,  the  brachystochrone 

mahes  a  constant  angle  ivith  the  meridian  curve;  but  ivhen  the  velocity  is 

too  small  to  carry  the  body  to  the  vertex,  the  brachystochrone  is  a  curve 

ivhich  mahes  an  increasing  angle  with  the  meridian  as  it  descends,  and  may 

sometimes  become  perpendicular  to  the  meridian ;  and  when  the  velocity  is 

more  than  sufficient  to  carry  the  body  to  the  vertex  of  the  paraboloid,  the 

brachystochrone  is  an  infinite  curve,  which  is  horizontal  at  its  highest  point, 

and  diminishes  its  angle  with  the  meridian  as  it  descends. 

If  the  equation  of  the  paraboloid  is 
u2  =  4  p  z 

in  which  the  axis  of  z  is  the  downward  vertical,  the  equation  (33428) 
becomes 

si»°=4v/'fe(1-:?)]- 
If  z0  is  positive  and 

p>iA*ff> 



the  substitution  of 

o  o  "7 

shr a 

•lp 

? 

q. 

=  &o  t« 

Lll2« 

■> 

Cos 

if: =  +2- 

z-\-p 

+  <? 

P  — 

q    '
 

gives 
s  =  h  sec  a  (p  —  q)  [tp  +  Sin  (jp) , 

in  which  the  upper  signs  correspond  to  the  case  in  which  p  is 

greater  than  q,  and  the  lower  to  that  in  which  p  is  less  than  q. 

In  the  case  in  which  p  is  greater  than  q,  the  substitution  of 

COS^  111  =   ; — -, 

z+p 

'     2   •  P   1 

sin  i  - P-\-z» 
gives 

=  —  tan  a  i 

P- 

V /  ( 1  -J-  - )    3^  u<  —  S;  i/'  —  cot  ̂   y/  ( 1  —  sin2/  sin2  if ) 

-^(-^,t)]. 
When  ̂   is  smaller  than  q,  the  substitution  of 

2  ~   z0 COS     W  S=    :     , T              "  +  ? 

•     '2  •  <7   P 

gives 

I  =  tan  a  J (2+5)  [§,  y  —^  9?.  ̂   _|1-  cot y  y/ (1  —  sin2/  sin2 1//) 

When 

43 
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the  arc  is 

s  =  sec  a  (z —  z0), 

so  that  its  inclination  to  the  axis  is  constantly  equal  to  a,  and  the  brachys- 

tochrone  is  defined  by  the  equations 

z  =  z0  sec2  cp , 

"=  tan  a  i  /-(tan  (p  —  </>). 

When 

the  arc,  measured  from  its  cusp,  is 

S  =  3^0  ̂2  +^)f—  (*«  +P)1]  • and  if 

the  brachystochrone  is  defined  by  the  equations 

p  -\-z  =p  sec2  /  Cos2  (p , 

^L5  =  tan(|^,  +  -25   »). tan  j<  \2sm2j'    '    tan  2  r         / 

when 

in  which  case  the  brachystochrone  has  a  lower  limit  at  which  it  is 

horizontal,  the  substitution  of 

2  ^<f sec  a  ■=  — — , 

2p 

-*■  cm"1  r/  ' 

COS  W  =   '-j-   , 

T  P  +  9 
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gives,  at  the  lowest  point  of  the  curve,  where  (p  vanishes z  =  q, 

and  for  the  value  of  s,  measured  from  the  lowest  point, 

s  =  £  [p  -f-  q)  cot  a  (sin  (p  -f-  cp ) . 

The  substitution  of 

2  9  —  z tan  ijj  =  I — -, 

'0 

sin-"  i 

'p+q. 

gives 

K-*^«v+*»<(-^.v)]- sin«y/[p  (p-\-q)]  L     '  '  q~  '      '    q      *  \  y 

When  0O  is  negative,  in  which  case  the  condition  (33630)  is 

satisfied,  the  substitution  of  the  equations  (3372_5)  with  the  lower 

sign  gives  the  corresponding  value  of  (3377)  for  the  arc  measured 

from  its  upper  limit,  which  corresponds  to  the  vanishing  of  (p. 
When 

—  0o<2>, 

the  substitution  of 

i 
COS    If r +  ? 

z-\-p* 
•     2    '  P  -\~  ~0 

snr  i  = JL-1 — ■ p  —  q 

gives 

I  =  tan  a  \J \- — -  j  I  %{ y  —  %i  \\>  -\-  cos  xj>  y/  (cot2  y  -f-  cos2  i) 

1    /?  — y         \       j9 —  ̂      '  /J 

When 
—  Zo>P 
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the  substitution  of 

cos  1/ 

;  „,  __  *  +  ? 

•     2   •  P-\~Z0 

snr  i  — 

gives 

"  =  tan  «  w  ( — - — -)  \$i xp  —  2Ft- ijj  -4-  cos \\>  \J  (cos2  i/;  -|-  cos2 i) 

When 

the  brachystochrone  is  defined  by  the  equation 

•,  =  ton«  [v/(^  +  ̂|'k?^g+^f]. 
581.  In  the  case  of  the  heavy  body  upon  the  paraboloid  of  revolu- 

tion in  which  the  axis  is  vertical  and  directed  vpivards,  the  br achy stochr one 

forms  an  increasing  angle  with  the  meridian  as  it  descends  and  is  perpen- 

dicular to  the  meridian  at  its  lowest  point.  In  this  case,  the  inclination 

to  the  meridian  is  determined  by  the  equation 

if  (33625)  is  the  equation  of  the  paraboloid.     By  the  substitution  of 

sin2  a  = 

~  2p  ' 

q  = 

=  zQ  tan2  a 

■> 

Cos  cp  = 
_2z  +  />- 

P+<1 

9> 

vanishes 
at 

the lowest  point where 
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and  the  value  of  the  arc,  measured  from  the  lowest  point,  is 

s=%  {})  -4-  q)  sec  a  ((p  -\-  Sin  ip) . 
The  substitution  of 

tair  w  =   

snr  i  =    -.— 

gives 

582.     In  the  case  of  a  heavy  body  upon  a  vertical  right  cone,  if  the 

vertex  of  the  cone  is  assumed  as  the  origin,  and  if 

a  is  the  angle  which  the  side  of  the  cone  makes  with  the  axis, 

A2  q  cos  a 
1\  =  — ~2   3 sin  a 

Q  =  the  angle  which  r  makes  with  the  axis  upon  the  developed 
cone, 

the  inclination  to  the  meridian,  the  derivative  of  the  arc  and  of  &  are 

.  VC^'iO— r<>)] sin 

Drs 

r 

r 

v/[rs_2r1(r  —  *•„)]' 

D  6  =  -      V[2y,i(r
  — ro)] 

When 

the  substitution  of 

r  sj  [r- 

—  2  rl  (r  — 

-*•«)] 

2 ro>r1, 

sin2/ 

an  y 

r,  cot  i 

—  r-V 

r 

=  r0  sec2 

£?, 
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gives 

cos  1  =  cos i  sec  {x\j  —  i), 

s  =  r0  sin2  i  (cosec  x}>  —  cosec  2i)  —  rx  log  (tan  \  y  cot  i) , 

£  =  —  sin[-1]  (sin i sin  y)  -\-  sin  i&i<p, 

in  which  the  arc  is  measured  from  the  cusps,  at  which  point    .- 

6=cp=1=0,     xf>=2L 

This  br  achy  stochr  one  extends  to  infinity  from  the  cusp  without  ever  becoming 

perpendicular  to  the  side  of  the  cone.  The  greatest  angle  which  it  makes 

with  the  side  is  i,  and  at  this  point  of  least  inclination  to  the  side 

tfj=i,     r=2r0,     (p=z^n, 
6  =  —  i  -j-  sin  *  ̂   ( h  n ) . 

When 
2r0=r1, 

the  br  achy  stochr  one  is  defined  by  the  equation 

H  =  tan.-y(^-l)_Cot.-y(^-l), 

and  the  length  of  the  arc,  measured  from  the  point  of  least  inclina- 
tion to  the  side,  is 

s  ==  r  —  2  r0  -f-  r0  log  (£■  —  l)  • 

When  r0  is  positive  and 
2r0<r1? 

the  substitution  of 

Sec2/'  =  — , 

m  I    ri  Tan  P Tan  w  =  +   , T        —   r — r^i 



gives 

—   o4o  — 

\  Tan  ft  Cosec  \f>  — 1\  log  Tan  h  y> 

in  which  the  arc  is  measured  upon  each  branch  from  the  point  at 

which  it  is  horizontal  and  the  upper  sign  belongs  to  the  lower 

branch  and  the  reverse.  The  upper  branch  is  finite,  tvhile  the  lower 

branch  is  infinite,  and  the  value  of  if)  extends  on  the  upper  branch 

from  2  (1  to  infinity,  and  on  the  lower  branch  from  infinity  to  zero. 

For  the  upper  branch  the  substitution  of 

sin  i  =  e  2P, 

r  —  r0  =  r0  sm  i  sir  cp , 

gives 
<3  =  2  (1  -f  sin  i)  [9?<  y  —  <3V  (sin  i,  y)]  . 

Upon  the  lower  branch  the  substitution  of 

? 
r  —  r, 

sin  i  sina  \\> ' 

gives 
6  =  2  (1  -f-  sin a)  ̂  (sin  t,  i/> ) . 

TF7i£«  r0  vanishes,  the  equation  of  the  brachjstochrone   upon   the   de- 

veloped cone  is 

r  =  2 1\  sec2  £  6 , 

and  the  length  of  the  arc  is 

s  =  2  rx  tan  £<3  sec  £ <3  -|-  2  ra  log  tan  (i  tt  -|-  I  6) . 

When  r0  is  negative,  the  substitution  of 

2  r0  —  4  sin  i 
Cosec2  p  = 

rx  (1  -[-sin  i)3 

'  —  rx  Cos  p 7 
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rx  Cot  /•>  Cosec  i/>  —  rx  log  Tan  \  if 

in  which  the  order  of  the  signs  and  of  the  value  of  \\>  is  the  same  as 

in  (3434)  with  reference  to  the  branches.  The  upper  and  finite  branch 

of  the  brachystochrone  lies  in  this  case  upon  the  upper  and  inverted  portion 

of  the  cone.  The  formulae  (343n,  34316_19),  apply  to  this  case,  in 

which  it  must,  however,  be  noticed  that  the  sin  i  is  negative. 

583.      When  the  solid  of  revolution  upon  which  the  heavy  body  moves, 

is  the  ellipsoid  of  which  the  equation  is 

(i)+(i)=i> 
the  inclination  to  the  meridian  is  determined  by  the  equation 

AuSl{Ai-z>)      • 
The  problem  naturally  divides  itself  into  two  cases.  In  the  first  case 

the  velocity  is  more  than  sufficient  to  carry  the  body  to  the  highest  point  of 

the  ellipsoid,  the  brachystochrone  is  a  continuous  curve  which  is  horizontal  at 

its  highest  and  lowest  limits,  and  which,  alioays  running  round  the  ellipsoid, 

is  most  inclined  to  the  meridian  curve   at  the  point 

In  the  second  case,  the  velocity  is  not  sufficient  to  carry  the  body  up  to 

the  highest  point  of  the  ellipsoid,  and  the  brachystochrone  is  horizontal  at 

its  lowest  point,  but  has  cusps  for  its  upper  points.  In  each  of  these 

cases  the  length  of  the  arc  can  be  found  by  means  of  elliptic 

functions.  If  in  the  first  case  —  zx  and  02  are  the  coordinates  of  the 

upper  and  lower  limits,  or  of  the  common  intersections  of  the 

ellipsoid  with  the  paraboloid  of  revolution  of  which  the  equation  is 

u*  =  2A*g  (s-*o), 
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and  if  in  the  second  case  22  refers  to  the  intersection  of  the  ellipsoid 

with  the  paraboloid,  while  —  s1  is  the  coordinate  of  the  intersection 

of  this  paraboloid,  inverted  at  the  horizontal  plane  of  u'x,  with 
the  hyperboloid  of  revolution,  of  which  the  equation  is 

(i) -•(!.)=!> 
the  derivative  of  the  arc  is 

"*b     ax\  (*+*,)(«,-*)■ 

In  the  first  case,  when  the  ellipsoid  is  prolate,  and 

**  —  Ai-AV 

*z         -*-*•  u 
the  substitution  of 

gives 

*  v. .  —  ■?- 

When  the  ellipsoid  is  a  sphere,  of  which  the  radius  is  R,  the 

hyperbola  (3456)  becomes  equilateral,  and  the  length  of  the  arc, 

measured  from  the  lowest  point,  is  determined  by  the  equation 

S  2  2-J-2,   Z0 

cos  ■=  =   '-j-   -'. 

In  the  first  case  (34417),  the  substitution  of 

V 

r  •> 

cos/ 
sin  \l>t 

sin  1^2 ' 44 



—  346 

gives,  for  the  sphere, 

u   2coa2±\l)ljx    /cos  \p2  -\-  30S  tt>l     s   \    ,    2  sin2  \  ip, , 
sin  \jj. 

,.2  1 

2^1 -yp   /cos  il>2 -)- cos -i/>,     s  \    .    2  sin2  \  xp^  ̂   /       cos  i/>2 '-j-  cos  ipi      s   \ 

i;2         'I    1  —  cos  U>2      '2  R/  ~T"     sin  i/)2         *  V  1  -f-  cos  i/;2     '  2  i^/ 

_4cos2f  \px  (Ja  /cos ii;2-|- cost/)!      s  \        cosi/^  —  cos  xp2  ̂   /  s  \ 

sin  u>2         '  \     1  —  cos  iX)2     '  2  jff/  sin  i/j2  *  \2 11/ 

  tan[_1]   costfr-l-cosift!   
\/  (sin2 i/>2  cosec2  ̂   -f~  sin2  ti^  sec2  ̂ ) 

In  the  second  case  (34423),  the  substitution  of 

C0S2a)  =  ̂ =^=^, Z2   Z0 
%2   Zn 

.     o    .  Z2   Z0 

Sill2  2  - gives,  for  the  sphere, 

u    Z,-\-E   g*    /COS  Tpo   cos  V>0         \  z\   R   (Jfi    /C0S  tyo   C0S  ̂   \ 

x        R  sin  i/;2      '  V     1  —  cos  i/;2     '  "  /         R  sin  u>2     *  V     1  -|-  cos  \p2      '  '  / 

   -1  +  ̂    POP   /C03ip2  — COS1//Q         \    op     (R(l—  COS  !/■<,)  VI 

_  i^os^L     J'\    1— cosi/,2     '^/  i\«x  +  22cosV,3>VJ 

cos^-cosy,  g.      _cogec,-tan[-l]  /n  j1^..    ̂  1  smi/i2  '  v  (1-p-cos-i  tan- 9) 

In  the  case  in  which 

the  brachystochrone  is  defined  by  the  equation 

-  =  tan  i  w0  Tan[-1]  sin  -^  4-  tan[-1]  J^A. . *  '  2i?    '  tan|x//2 

584.     In  the  case  of  a  heavy  body  upon  any  surface  whatever, 

it  follows  from  (3293)  that 

v2        2g(z  —  z0) -  =  -^    =  a  cos  I  . 

Qt  Qr  J  pr 
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If,  then,  NT  is  the  normal  to  the  brachystochrone  drawn  in  the 

tangent  plane,  and  extended  to  meet  the  horizontal  plane  from 

which  the  body  must  fall  to  acquire  its  velocity,  the  preceding 

equation  gives 

NT={z— z0)sec2p=$QT, 

or  the  tangential  radius  of  curvature  of  the  brachystochrone  is  twice  the 

tangential  normal  ivhich  extends  to  the  horizontal  plane  of  evanescent 

velocity.     This  proposition  is  given  by  Jellett. 

585.  When  the  force  is  parallel  to  the  axis  and  proportional  to  the 

distance  from  a  plane  ivhich  is  perpendicular  to  the  axis,  the  surface  of 

revolution  of  equation  (33522)  is  an  ellipsoid  when  the  force  is  attractive 

toivards  the  plane,  and  it  is  an  hyperboloid  of  tivo  sheets  when  the  force 

is  repulsive  from  the  plane. 

586.  When  the  force  is  directed  toivards  a  fixed  point  and  propor- 

tional to  the  distance  from  the  point,  the  surface  of  equation  (33522)  is  an 

ellipsoid  if  the  force  is  attractive,  but  if  the  force  is  repulsive,  the  surface 

may  be  an  ellipsoid  or  it  may  be  an  hyperboloid  of  tivo  sheets. 

587.  When  the  force  is  directed  towards  a  fixed  point,  and 

inversely  proportional  to  the  square  of  the  distance  from  the  point, 

the  surface  of  revolution  of  equation  (33522)  is  defined  by  an  equa- 
tion of  the  form 

K2=4(I_i). 

588.  Other  conditions  might  be  combined  with  that  of  the 

brachystochrone.  Thus  if  the  total  length  of  the  arc  is  given,  the  normal 

pressure  to  the  brachystochrone  is 

in  which  b  is  an  arbitrary  constant,  and  is  dependent,  for  its  value, 
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upon  the  given  length  of  the  arc.    This  constant  is  generally  infinite, 

when  the  brachystochrone  is  a  straight  line. 

589.  Under  the  condition  of  the  preceding  section,  the  equation 

of  the  brachystochrone,  in  the  case  of  §  569,  referred  to  the  coordinates  of 

(33017)  is 

In  the  case  of  §  570,  this  equation  gives 

2aq  = 
PiP 

(P2-W 

590.  In  the  case  of  the  parallel  forces  of  \  571,  (34728)  gives 

\1  —  oasmy 

When  the  force  is  constant,  this  equation  gives 

a2  sin  * 
^        g{l  —  basinlf ' 

so  that  when 
ba>l, 

the  curve  has  points  of  contrary  flexure. 

591.  In   the   case   of  §  576,  and  with  the  condition  of  §  589,  the 

equation  of  the  brachystochrone  has  the  form 

,   ,  ,    =  u  sin  %  =  u2  D  ". 
l-\-bv  "  3X 

The  inclination  of  the  curve  to  the  meridian  arc  is  therefore  con- 

stant upon  the  surface  of  revolution,  which  is  defined  by  the  equation 

Bv  =  u(l+bv), 

and  this  surface  has  the  same  relation  to  other  surfaces  of  revolution  in 
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respect  to  the  braclvjstochronc  formed  under  the  present  conditions  with 

those  which  are  indicated  for  the  surface  of  §  579. 

In  the  case  of  a  heavy  body,  the  equation  of  this  defining 
surface  of  revolution  is 

2g(,-B0)==(^-rJ. 

592.  If  the  condition  is  a  mechanical  one,  such  that  the  total 

expenditure  of  action,  defined  as  in  §  308,  shall  be  given,  the  normal  pres- 
sure to  the  br  achy  stochr  one  is 

in  which  b  is  an  arbitrary  constant,  and  is  dependent,  for  its  value, 

upon  the  given  expenditure  of  action.  When  this  constant  is  in- 

finite, the  normal  pressure  is  equal  and  opposed  to  the  centrifugal 
force. 

It  is  apparent,  from  the  preceding  equation,  that  under  the 

action  of  finite  forces,  this  brachystochrone  cannot  be  a  continuous 

curve,  in  one  portion  of  which  the  direction  of  the  normal  pressure 

coincides  with  that  of  the  centrifugal  force,  and  is  opposed  to  it  in 

another  portion. 

593.  Under  the  condition  of  the  preceding  section,  the  equation 

of  the  brachystochrone,  in  the  case  of  \  569,  referred  to  the  coordinates  of 

(33017)  is 
Si  —  £20 

l2       \vJ 

In  the  case  of  §  570,  this  equation  gives 

_[l-f25a(r2-r2)]2  y/^-r-g) 
*>  ~~    1  —  2ba(f  —  rl)    *     plS/a     ' 

594.     In  the  case  of  the  parallel  forces  of  §  571,  (3492,t)  gives 

  ■Q~^°   —  sin2  * 

[l  +  2b(n  —  Si0)J~        s' 
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When  the  force  is  constant,  this  equation  gives 

595.     i«   ̂ e   c«se   of  §  576   «ho?  «t$A  the  condition  of  §  592,  the 

equation  of  the  brachgstochrone  has  the  form 

The  inclination  of  the  curve  to  the  meridian  arc  is,  therefore, 

constant  upon  the  surface  of  revolution,  which  is  denned  by  the 

equation 

Bv  =  u{l  +  bv2), 

and  this  surface  involves,  for  the  present  case,  the  properties  of  the  defining 

surface  of  §  579. 

In  the  case  of  a  heavy  body,  the  equation  of  this  defining 
surface  of  revolution  is 

2B*g{z-zQ)  =  i?\l  +  2bg{z-z«)-]\ 

596.  The  brachjstochrone  in  a  medium  of  constant  resistance  is 

entitled  to  special  consideration.  In  this  case,  it  is  convenient  to 

introduce  the  length  of  the  arc  as  the  independent  variable.  The 

equation  of  motion  along  the  curve  is 

v*=2S2  —  27cs, 

in  which  k  is  the  constant  of  resistance.     This  equation  must  be 

combined  with  the  equation 

(A*)2  +  (A*)2=1. 
If  h  ,"i  and  |  fi  are  the  respective  multipliers  of  these  equations  in 
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the  method  of  variations,  the  brackystockrone  is  defined  by  the  differential 

equations 
1 

H'l  =  -s, 

_  A  Si       vD,v4-  k 
Ds  a  =  —^  =  — s-y±-  - ; 

and  by  the  following  expression  of  the  normal  pressure  directed  in 

the  opposite  way  to  the  centrifugal  force 

Dz  12  sin  v  -\-  Dx  Q.  cos  v  =  - — . 

When  k  vanishes,  the  value  of  /a,  is 

l 

and,  therefore,  the  value  of  /x  is  the  negative  of  the  reciprocal  of  the  ex- 

pression which  is  obtained  for  v  token  there  is  no  resisting  medium,  and 

which  is  independent  of  the  magnitude  of  the  fixed  force. 

597.      When  the  force  is  directed  toioards  a  fixed  centre,  the  nota- 

tion of  §  569  gives  by  (330]5)  for  the  value  of  \i, 

PS/2 
598.  When  the  forces  are  parallel,  the   equation    (33131)    gives 

jtt  in  the  form 

a=   *-. COS  V 

599.  From  the  preceding  equations,  the  equation  of  Ike  brackys- 

tockrone of  a  keavy  body  in  a  medium  of  constant  resistance  has  the  form 

Q  =
 

JR  sin  v 

[1  — li  cos  (v   J),,)] 
3  J 

in  which  R,  k,  and  v0  are  arbitrary  constants. 



Qc: 
52   — 600.  In  a  medium  of  ivhich  the  laio  of  resistance  is  expressed 

as  a  given  function  of  the  velocity,  the  derivative  equation  of  mo- 
tion is 

vDsv  =  Dsn—Vi 

in  which  V  is  a  given  function  of  v.  The  differential  equations,  by 

which  the  brachystochrone  is  defined,  become,  if  i  (i  and  ̂   are  the 

multipliers  of  (35029)  and  (3524), 

Ds  (ft  sin  v)  =  Dx  S2  Ds  ̂  , 

—  Ds  ({i  sin  v)  =  Dz  S2  Ds  fit , 

—  1-  —  vDsii1  +  H,1DvV=0. 

The  reduction  of  these  equations  gives 

I)sH,=Ds£2Dsfh  =  Ds(l-\-lhr), 

-     P  =  -  +  Pi  F; 

and  the  expression  of  the  normal  pressure  to  the  brachystochrone 
becomes 

Dz  £2  sin  v  -J-  Dx  &  cos  v  =  — ^ Ds  Si  vs  ii 

Fi  Vvs  -f-  v2 
QIXXV2J)V    V   Q' 

601.      When  the  forces  are  'parallel  to  the  axis  of  z,  the  equations 

(3529)  and  (35217)  give 
a 

sin  v ' 

F>! 

sin  v        v 
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G02.     These    equations   give    for  the  br •achy 'stock -one  of  a  hear?/ 
body  in  a  resisting  medium, 

j.      i    7         ya  9 
J  r  j.  i  Ksin*         Vv7 

by  which  v  is  cleterniined  in  terms  of  v.  The  substitution  of  this 

value  of  v  in  the  equation 

v  Dv  v  ir - — —  =  —  g  cos  v  —  V , 

gives  the  equation  of  the  brachystochrone  in  terms  of  o  and  v.  The  pre- 

ceding formulae  include  the  results  obtained  by  Jellett  in  his  inves- 

tigation of  this  particular  case. 

When  V  is  inversely  proportional  to  the  velocity,  the  equation 

of  the  brachystochrone  may  assume  the  form 

  2  h  [h  cos  2  0  —  a)  -f  kf  sin  2  (v  —  a) 

^  m-\-g  cos  v  \_h  cos  2  (v  —  a)  -\-  £] 

When  V  is  proportional  to  the  square  of  the  velocity  and  has 
the  form 

the  equation  of  the  brachystochrone  is  derived  from  the  elimination 

of  v  between  the  equations 

,  \         </  cos  a        q  sin  v 

cx»(y  — a)=--^   'W, 

!  a    (q  cos  v        7  \         To  q  cos  a        0  ,  ,1  /V/  cos  v    ,     7  \ COS  i 

&  q  sin  i 

603.  In  these  cases  of  the  brachystochrone  in  a  resisting 

medium,  it  is  apparent  that  the  condition  (3296)  is  usually  violated, 

and  that  Euler,  consequently,  erred  in  extending  this  proposition  to 

the  case  of  the  resisting  medium. 45 
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604.  The  determination  of  the  form  of  the  curve  constitutes 

the  principal  feature  of  the  general  problem  of  the  brachystochrone. 

But  the  nature  of  the  curve  may  be  given,  and  the  problem  is  then 

reduced  to  one  of  maxima  and  minima,  in  which  the  various  param- 
eters of  the  curve  are  to  be  determined.  Euler  has  shown  that 

there  is  a  peculiar  analytic  difficulty  in  some  problems  of  this  class. 

A  single  example  will  illustrate  this  species  of  inquiry. 

Let  the  given  curve  be  the  circumference  of  a  circle,  of  which 

the  plane  is  vertical,  and  let  the  ball  start  from  a  state  of  rest  at  the 

upper  point.  If,  then,  2  a  is  the  angle  which  the  line,  joining  the 

two  points,  makes  with  the  horizontal  line,  and  if  1%  is  the  angle 

which  the  radius  drawn  to  the  upper  point  makes  with  the  vertical, 

the  equation  for  determining  i  is 

sec  i  \%>i  (  i  n)  —  8;  (2  a  —  i)~]  —  [cot  2  (i —  a)  -j-  cos  f\ 

[^(^)-^(2«-^)]+^v/ 
cos  2  a     /sin2(i — «) 

sin  2  a 
0. 

THE   IIOLOCHRONE. 

605.  A  curve,  in  which  the  time  of  descent  along  a  given  arc, 

is  a  given  function  of  the  arc,  or  of  its  defining  elements  may  be 
called  a  holochrone. 

606.  The  problem  of  the  holochrone  becomes  simple,  when  the 

forces  are  fixed,  and  the  time  of  descent  is  proportional  to  a  given  power  of 

the  arc.     Thus,  if  the  time  of  descent  is  expressed  by 

Ts=As11, in  which  s  is  the  length  of  the  arc.     Let 

B  =  ±V_pl[]rh{1_h2-2n)-iJ 
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in  which  the  upper  sign  corresponds  to  the  case,  in  which  n  is  less 

than  unity,  and  the  lower  to  that  in  which  n  exceeds  unity.  The 

force  along  the  curve  is 

S  =  —  Bs1-2". When 
n  =  l, 

the  force  along  the  curve  is 

a  it  B 
l  A2s  s 

607.  When  the  force  is  that  of  gravity,  the  equation  of  the 

holochrone  of  the  preceding  problem  assumes  the  form 

^sintr  =  —  B  sl~2n. 

608.  If  the  time  of  descent  admits  of  being  developed  according  to 

integral  ascending  powers  of  s,  the  developed  expressions  of  S  and 

S2S  are  obtained  from  the  formulas 

&s  =  >2Bs, 

8=DSQS- 

in  which  the  successive  terms  of  P,  are  obtained  from  the  equations 

represented  by 

u  r 

The
  

sec
ond

  
mem

ber
   

of  this
  
equ

ati
on 

 

is  to  
 
be  deve

lope
d   

in 

form
   

prec
isel

y  

as  if  V  wer
e  

the 
  
sym

bol
  

of  deri
vati

on, 
 

and
  

in  the 

resu
lt  

ther
e  

must
  

be  subs
titu

ted 
 

for 
 
PJ=0

  
and 

 
F™jP

s==0
,  

the 
 
valu

es 

P,  =  o  =  cos</)PS=0, 

r:Ps=0  =  (l  —  Bin«+*9)  Z?P,_0. 
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609.  When  the  forces  are  fixed,  and  the  time  of  descent  is  a 

given  function  of  the  initial  value  of  the  potential,  the  problem  of  the 
holochrone  can  be  solved  by  the  method  applied  by  Abel  to  the 
case  of  a  heavy  body.  If  A  is  the  final  value  of  the  potential,  in 

which  the  arbitrary  constant  is  determined  so  that  the  potential 

may  vanish  with  the  velocity,  the  time  of  transit  expressed  as  a 
function  of  A,  assumes  the  form 

T  — i-   f       Bn* 

The  integral,  relatively  to  A  of  the  product  of  this  expression, 
multiplied  by 

7ts/(Si— Ay is 

o  a  a 

1   f       Ta       =    1      f\        1  f      B^s     1 
n  Ja  \l  (Si— A)       n^-2jAi^  [Si  — A]  Ja  y/ (A—  Si)l 

But  the  notation 
l 

rh=fx(-\ogzy-\ 0 

with  the  familiar  equation 

i 

xa-l 

u 

gives,  by  a  ready  reduction 

r  xa~x     rar(i—n) 

Jx(i—Xy 

f\         1  f      Si*-1    ]_xa  n    _    ,_       nxa 
jAl(Si—A)l-"jQ  (A  —  Si)"l~  a  ^  %'~  asinnn' 
n  n 

Note.  —  The  notation  (-SoG^)  is  substituted  for  that  of  (912.i)>  which  was  unwisely 

introduced  instead  of  the  usual  form,  which  is  here  restored. 



—  357 

If  the  product  of  this  equation  multiplied  by  a  cp  («)  is  in- 

tegrated relatively  to  a,  and  if  the  function  fx  of  x  is  defined  by 

the  equation 

f(<f,(cc)x*)=fx, 
so  that 

*J  a 

the  integral  gives 

sinjMr  f  [         1  f     2>o/a_l  _  r 
0  0 

which,  when 

gives  by  (35616) 
a 

zu 

V(#-^)' 

0 

The  general  relations  between  5  and  J2  complete  the  solution, 
and  indicate  the  form  of  coordinates  in  which  the  solution  should 

be  finally  exhibited. 

610.  If  the  forces  are  parallel  to  the  axis  of  z,  12  is  a  function 

of  0,  and  the  elimination  of  s  between  (357i5)  and  the  equation 

cos*z  =  Dzs, 

gives  this  holochrone  expressed  in  terms  of  the  length  and  direction 
of  the  arc. 

611.  If  the  forces  are  directed  towards  a  fixed  point,  which  is 

assumed  to  be  the  origin  of  coordinates,  the  elimination  of  r  be- 

tween (357i5)  and 
cos"  =  DTs, 

gives  this  holochrone  expressed  in  terms  of  the  length  of  the  arc 
and  its  inclination  to  the  radius  vector. 
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612.     If  TA,  developed  according  to  powers  of  A,  is  expressed 

it  is  evident  that 

s=v/^[^^4 
613.  An  interesting  case  of  this  potential  holochrone  is  obtained, 

ivhcn  the  body  is  supposed  to  approach  the  point  of  maximum  potential 

along  a  given  curve,  and  the  required  curve  is  to  be  such  that  the  ivhole 

time  of  oscillation  shall  be  a  given  function  of  the  maximum  potential.  If 

sx  denotes  the  given  arc,  the  time  of  oscillation  has  the  form 

rp   _J_    f     Dy  (*  +  *.)  . 
A       yjtja   \/{A  —  Si)' 

so  that,  by  the  process  of  §  609, 

*y 

In  order  that  the  two  curves  may  be  continuous,  the  direction 

of  the  given  curve  must  coincide  with  that  of  the  level  surface  at 

the  point  of  maximum  potential.  But  this  direction  may  be  given 

by  an  infinitesimal  bend  at  the  extremity  of  the  curve,  so  that  this 

is  not  a  practical  limitation  of  the  problem. 

614.  If  the  given  time  of  oscillation  is  constant,  the  equation 

(35818)  assumes  the  form 

B(s-+-Siy=(2; 

and  the  compound  curve  becomes  a  peculiar  species  of  tautochrone,  which 

was  investigated  by  Euler  in  the  case  of  heavy  bodies. 

615.  When  the  forces  are  not  wholly  fixed  but   mag  depend  upon 



—  359  — 

the   velocity,   the  problem  of  the  holochrone   becomes,  to   a   certain  extent, 

indeterminate.     For,  if W=0, 

is  an  assumed  equation  between  s,  t  and  v,  such  that  /  and  s  vanish 

together,  but  when  v  vanishes,  the  resulting  equation  between  s  and 

t  assumes  a  given  form  corresponding  to  the  given  condition  of  the 

holochrone,  the  derivative  of  this  equation  gives,  for  the  expression  of  the 

force  along  the  curve, 

Dt  W+vDs  W 
1  ~  Dv  W        ' 

from  which  the  time  is  to  be  eliminated  bg  means  of  the  assumed  equation. 

616.  In  most  problems,  in  which  the  forces  are  dependent 

upon  the  velocity,  the  form  of  R  is  not  unlimited,  but  is  usually  so  re- 
stricted that 

R  =  RS  +  RV, 

in  which  Rs  is  a  function  of  s  and  represents  the  action  of  the  fixed 

forces,  while  Rv  is  a  function  of  v  and  represents  the  resistances,  to  ivhich 

the  bodg  is  subject.  In  this  form  of  the  problem,  geometers  have  not 

made  much  progress  towards  its  solution,  although  the  case  of  the 

tautochrone,  exhibited  in  this  aspect,  has  been  the  occasion  of  much 

discussion  and  many  difficult  memoirs. 

617.  If  the  equation  (3593)  solved  with  reference  to  t,  ac- 

quires the  form i=Thm 

the  expression  for  R  is 
1  —  rD.T..„ 

R 
VvTl)V 

which  is  essentially  identical  with    Lagrange's   most  general  formula 
in  the  case  of  the  tautochrone. 
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618.  If  the  equation  (3593),  solved  with  reference  to  v,   ac- 

quires the  form v=Vs,t, 

the  expression  for  R  is 

R  =  vDsl\t-\-DtVht, 

which   formula  comprises  Laplace's  general  form  of  solving  the  taato- 
chrone. 

619.  If  the  equation  (3593),  solved  with   reference  to  &,  ac- 

quires the  form 

the  expression  for  R  is 

R-. 

v  —  Dt  Sv,  t 

620.     When  the  equation  (3593)  is  presented  in  the  form 

T-\-jS-{-V=0, 

in  which  T,  iS,  and  V  are  respectively  functions  of  t,  s,  and  v,  the 
value  of  R  is 

DtT-\-vDsS 

R  =  — 
I)„  V 

But  DtT  is  a  function  of  t  and,  therefore,  of  S -\-  V;  it  may, 

indeed,  be  any  arbitrary  function  of  S  -j-  V,  so  that  if  tf  denotes 

this  arbitrary  function,  R  becomes 

R  =  — Dv  V 

621.     When,   in   the    preceding    section,    $   is   changed    into 

—  log  S  and F=logy, 
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the  value  of  R  may  be  presented  in  the  form 

R  =  vy(^)  +  viI>s\ogJS; 

which  is  the  same  with  a  familiar  formula  of  Lagrange  for  the  case 

of  the  tautochrone. 

622.     The  cases,  in  which  the  formula  (3G13)  assumes  the  form 

(35915)  are  easily  investigated.     For  this  purpose  let 

V 

0—~s> 

and  the  derivatives  of  (3613)  give 

Dv  R  =  Dzl  -f  2v  D,\ogS=  A  «., 

DsDvR  =  —ZgDlx  +  2zSDsDs\og!3=:Q', 
whence 

Dlz  =  c2>S2DsDs\ogS=2a, 

in  which  a  is  any  constant.     Hence 

X  =  a  s2  -f-  b  z  -f-  e, 

in  which  b   and  e   are   constants  introduced   by  integration.     The 

value  of  R  is,  then, 

R  —  eS-\-bv-\-(a  +  DsS)^', 

so  that,  if  h  and  H  are  constants,  the  final  values  of  8  and  R  are 

£  =  «#  +  &«>  +  *»*; 46 
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and  this  formula  of  Lagrange  is  restricted  to  the  resisting  medium,  in 

which  the  resistance  has  the  form 

a  -\-bv-\-h  v2 

which  was  first  remarked  by  Fontaine. 

The  form  of  T,  in  this  case,  may  be  derived  from  the  equations 
  T 

c      =  z, 

I     „„     I      7,     I     e     7,     I      n  „T     I      „  „-T 

BtT=j  =  az  +  b  +  °-=b  +  ccT± ac 

■> 

which  irive 

V  (2  .a)  cos  [(,  - 1)  sj  (2  c  a  -  g)]  =  ?"  + VffiA'^ 

_  2eavS-\-beS2-\-bavi 
b  v  S-\-  e  S2  -j-  a  v3 

When  v  vanishes  this  equation  becomes 

v/(26«)cos[(t  —  t)^{2ea  —  b2)~]=b, 

so  that  the  interval  t —  t  is  independent  of  the  length  of  the  arc, 

and  the  curve  is  a  tautochronc  if  %  is  also  independent  of  s,  which 

is  the  case  when  S  vanishes  with  s,  that  is,  when 

M=-a7. 
ii 

This  condition  is  always  observed,  if  the  direction   of  the    curve 

coincides  with  that  of  the  level  surface  at  its  termination,  so  that  in 

every  case,  this  holochrone  is  essentially  tcmtochronons. 

623.     If,  instead  of  (35925)  we  suppose 

T=  T 

and  if  i\>  denotes  an  arbitrary  function,  the  value  of  R  has  the  form 

B==1}p(Ts,v)^-vDsTs
, 



op  o 

When 

Ts>v=  S  V-\-  S± 

in  which  S  and  iS\  are  functions  of  s,  and  V  is  a  function  of  v,  the 

value  of  R  becomes 

which  includes  Lagrange's  formula.  Forms  of  this  kind  may  be 

indefinitely  multiplied,  without  diminishing  the  difficulty  of  obtain- 

ing such  as  are  new  and  not  included  in  the  investigations  of  §  622. 

624.  A  curious  case  of  the  holochrone  is  introduced,  when  the 

form  of  R  is 

R  =  Rs  +  Rv  +  v2JS1, 

in  which  ̂   is  a  function  of  s.  The  only  case  of  (3613),  which  can 

assume  this  form  is  easily  proved  to  be  that  of  (36131)  when  JS 

is  left  undetermined.  If,  then,  the  factor  of  ̂ '2,  diminished  by  a 
constant,  is  inversely  proportional  to  the  radius  of  curvature,  the 

form  of  the  resistance,  by  including  in  it  part  of  the  term  c  S,  is 

that  of  (3623)  increased  by  a  term  proportional  to  the  friction  upon  the 
curve. 

If  the  fixed  force,  in  this  case,  is  that  of  gravity,  and  the  axis 

of  z  is  vertical,  and  if  v  is  the  inclination  of  the  radius  of  curvature 

to  the  axis  of  z,  the  first  and  last  terms  of  R  give,  if  k  is  the  con- 

stant of  friction, 

q  g  sin  v  -\-  leg  cos  v 

e  ' 

a-\-DsS=a—y-   j^   =  —  (h-)r-)S, 

1   a  e  —  h  g  sin  v  —  h  h  g  cos  v 

l>  (1  —  P)  g  cos  v 
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so  that  the  curve  determined  by  (36 129 )  is  included  in  this  form.  This 

is  a  generalization  of  Bertrand's  similar  investigation  with  regard 
to  the  cycloid. 

THE     TACHYTROPE. 

625.  A  curve  in  which  the  law  of  the  velocity  is  given  may 

be  called  a  tachytrope. 

626.  When  the  laiv  of  the  velocity  is  given  in  an  equation  between 

the  velocity,  the  space,  and  the  time,  the  formidce  of  §  615  are  directly 

applicable  to  the  complete  solution  of  the  problem  ;  and  all  the  subsequent 

transformations  of  these  formidce  may  be  applied  to  the  present  case. 

627.  When  the  time  is  not  involved  in  the  equation  (3593), 

but  the  portion  Rv  of  the  force  R  is  given,  the  other  portion  Rs  is 

determined  by  the  equation 
vD,W      p 

from  which  v  is  to  be  eliminated  by  the  given  equation  (3 5935). 

Euler  has  solved  various  cases  of  this  tachytrope. 

628.  One  of  the  simple  examples,  solved  by  Euler,  is  when, 

in  the  case  of  a  heavy  body, 

Rv  =  —kvmy 

and  the  velocity  is  to  depend  upon  the  arc  in  the  same  form  as 

if  the  body  descended  in  a  vacuum  upon  an  inclined  straight  line, 

so  that  the  equation  (3593)  acquires  the  form v2  =  hs, 

whence 

g  sin  v  =  Rs=ih-\-  Jc  (h sfm. 
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When m=2, 

this  equation  becomes 

g  sin  v  =  \  h-\-  khs, 

or  the  required  tachytrope  is  a  cycloid. 

629.  Another  simple  and  interesting  example  of  this  problem 

was  proposed  by  Klingstierna  and  solved  by  Clairaut.  It  is  that 

of  a  heavy  body  in  a  medium,  of  which  the  resistance  is  propor- 

tional to  the  square  of  the  velocity,  approaching  the  origin  with  a 

velocity  equal  to  that  which  it  would  have  acquired  by  falling 

in  the  same  medium  through  a  height  equal  to  the  distance  of 

the  body  from  the  origin  measured  upon  the  curve.     In  this  case 

9  /1  „—  2ks> Rv=kv2 

whence  the  equation  of  the  tachytrope  is 

Dsz  =  2c-*ks—  1, 
of  which  the  integral  is 

/c(s-\-s)  =  l 
c 

-2/fcs 

630.     A  simple   example   of  the   problem  of  §  627  is  that  in 

which  the  velocity  is  uniform.     In  this  case 

JRS  =  —  Rv  =  a  constant  =  Ds  11 , 

so  that  in  the  case  of  a  heavy  body  this  tachytrope  is  a  straight  line  ; 

in  that  of  a  constant  force  directed  toivards  a  fixed  point,  it  is  a  loga- 

rithmic spiral ;  and  in  every  case  the  sine  of  the  angle,  at  ivhich  it  inter- 

sects each  level  surface,  is  inversely  proportional  to  the  fixed  force  ivhich 

acts  at  the  point  of  intersection. 
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631.  When  the  given  forces  are  parallel  to  the  axis  of  s,  and 

the  given  equation  (3593)  is  expressed  in  terms  of  v  and  z,  the 

equation  of  the  tachytrope  is 

(Dz  12  sin  v  4-  Rv)  Dv  W-\-  Dz  Wv  sin  v  =  0, 

from  which  v  is  eliminated  by  means  of  the  given  equation.     Euler 

lias  solved  several  cases  of  this  tachytrope. 

632.  If,  in  this  case,  the  curve  is  to  be  such,  that  the  velocity 

shall  have  a  constant  ratio  to  that  which  it  would  have  acquired  in 

a  vacuum,  the  equation  (3665)  assumes  the  form 

Z>  £2  sin  v  =  —  - — — . 

If  the  resistance  is  proportional  to  the  square  of  the  velocity, 

so  that  Rv  has  the  form 

Bv  =  —  7cv2  =  —  2ka(n-\r  H), 

the  equation  of  the  tachytrope  is 

sin  vDz  log  (12-J-  H)  =  ̂7,- 

633.  When  the  given  forces  are  directed  towards  the  origin,  and 

the  given  equation  (3593)  is  expressed  in  terms  of  v  and  r,  the  equation 

of  the  iachgtrope,  in  a  medium  of  given  resistance  is 

(Dr  tt  cos ;  -f  Rv)  Dv  W-\-  Dr  Wv  cos  rs  =  0 

from  which  v  is  eliminated  by  means  of  the  given  equation. 

634.  If,  in  this  case,  the  curve  is  to  be  such  that  the  velocity 

shall  have  a  constant  ratio  to  that  which  it  would  have  acquired  in 

a  vacuum,  the  equation  (36624)  assumes  the  form 

Dr£2  cosrs  =  —  3-. 
s  1  —  a 
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If  the  resistance  has  the  form  (36G1G),  the  equation  of  the 

tachytrope  is 

cos:  Dr\og  (11  ±  II)  =  ̂-a. 

635.  When  the  law  of  the  velocity,  in  a  medium  of  known  resist- 

ance, is  given  in  a  given  direction,  such  for  instance  as  that  of  the  axis 

of  x,  and  so  given  that 
2>COS*  =  Ws>x, 

in  which  Wsx  is  a  given  function  of  s  and  x,  the  equation  of  the 

tachytrope  is  derived  from  the  equation 

(Ds  12  +  Mv)  cos  *  —  -  sin  sx  =  vDs  WSi  x  -\-  v  cos  %  Dx  Ws,  x ; 

from  which  v  is  eliminated  by  the  given  equation. 

636.  "When  the  velocity  in  the  given  direction  is  uniform, 
these  equations  become 

v  cos^.  =  a, 

n?  sin  i 

Q  — 

(A^+A)cossr 

637.  When  the  given  force  is  that  of  gravity,  and  (i  is  the  in- 

clination of  the  given  line  to  the  vertical,  the  equation  of  this  tachytrope 
becomes 

or  sin  s 

(g  cos  (fi  —  y  +  £v)  cos3  £ ' 

This  problem  is  solved  by  Euler  in  the  case  in  which  the  given 

direction  is  horizontal  and  in  that  in  which  it  is  vertical.  A  special 

solution  is  obtained  upon  the  hypothesis  of  a  constant  velocity ;  in 

this  case,  the  tachytrope  is  a  straight  line  determined  by  the  con- 
dition 

0cos(/J  —  *)+£„  =  0. 
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638.      When  there   is   no   resisting  medium,  the  equation  (3672,t)  of 

the  tachy trope  becomes 
a2  sin  x 

*>         g  cos3  sx  Cos  (fi—sxy 

When  the  line  is  horizontal 

and  the  equation  becomes 
9 

a 

s        gcos]UJ 

so  that  the  tachy trope  of  this  case  is  a  parabola. 
When  the  line  is  vertical 

0  =  0, 
and  the  equation  becomes 

a2  sin  * Q  =   r!> 

s      -  ̂ cos4i' 

so  that  the  tachy trope  of  this  case  is  the  evolute  of  the  parabola. 
With  the  notation 

b2  = 
fl^sin/S 

2d2 

the  equat
ion  

(3683)
,  

expre
ssed 

 
in  recta

ngula
r  

coordi
nates 

 
is 

2  b  \j  (x  -\-y  cot  /?)  —  b  x  =  2  cot  §  log  [cot  /3  -(-  h  y/  (>  -f- y  cot  /?)] . 

639.     If  the  resistance  is  proportional  to  the  velocity,  so  that 

Rv  =  —  7t  y , 

and  if  the  direction  of  the  line  in  which  the  velocity  is  given  is 
such  that 

g  COS/j  :=ka, 

the  equation  of  the  tachytrope  of  a  heavy  body  is 

a2       ̂   x 
x  sin  (i  — y  cos  fi  =  —  c~ir. 
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THE     TACnYSTOTROrE. 

640.  The  curve  on  which  the  final  velocity  in  a  given  resist- 

ing medium  is  a  maximum,  may  be  called  a  tachystotrope. 

641.  In  a  medium  in  which  the  law  of  resistance  is  expressed  as 

it  is  in  §  600,  the  notation  of  that  section  gives  for  the  differential 

equations  of  the  tachystotrope 

Ds  O  sin  v)  =  Dx  12  Bs  fa , 

—  Ds  0  cos  v)  =  Dz  12  Ds  fa, 

v  Ds  fa  =  fa  Dv  V. 

The  reduction  of  these  equations  gives 

D,  fJt  =  D$  £2  Ds  fa  =  Ds  {fa  V) , 

P  =  Pi  V, 

and  the  expression  of  the  normal  pressure  to  the  tachystotrope  be- 
comes 

Dz  12  sin  v  A-Dx  £2  cos  v  =    /*    =  — =^   =   l^n 

642.     In   the  case  in  which  the  law  of  the  resistance  is  ex- 

pressed by  the  formula 

V—  k  vm, 
the  normal  pressure  becomes 

P  m  q 

so  that  the  normal  pressure  has  a  constant  ratio  to  the  centrifugal  force, 

which  result  was  obtained  by  Euler  in  the  case  of  a  heavy 
body. 47 
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643.  Wlien  the  resistance  is  constant,  the  tachystotrope  is  a  straight 
line. 

644.  When  the  forces   are  parallel  to  the  axis  of  z,   the    equa- 

tions (3699)  and  (35916)  give 
a 

sin  v ' 

a  =  Mi  V=  - 

645.     The   equation   of  the   tachystotrope   of  a  heavy   body   is   ob- 

tained, therefore,  by  the  elimination  of  v  betiveen  the  equations 

V-. ga 

5  sin  v  —  a  cos  j'' 
v  Dv  v  a  a 
■   —  =   (7COSV   y-.   . 

Q  "  o  sin  v  —  a  cos  v 

646.      When  V  has   the  form  (36924),   the  equation  of  the  tachy- 

stotrope of  a  heavy  body  is 

jt—.        ro  =  h?  (m  a  q  sin  vY 

(osmv  —  acosvy  \     t/  \  / 

THE  BARTTROPE  AND  THE  TAUTOBARYD. 

647.  The  curve,  in  which  the  law  of  pressure  is  given,  may 

be  called  a  barytrope,  and  that  barytrope,  in  which  the  pressure  is 

everywhere  the  same,  may  be  called  a  tautobaryd. 

648.  When  the  pressure  is  a  given  function  of  the  arc,  which 

may  be  denoted  by  S,  its  equivalent  expression,  if  F  is  the  fixed 

force  which  acts  in  the  direction  /,  is 

-—.Feanf0  =  iS'. 

Q  
P 

and  the  differential  equation  of  the  barytrope  is 

2R  =  DS  [<>  (#+ JFcosft]  =  2F$mfp-\-  2  Rv. 



     Oil      

649.  In  the  case  of  a  heavy  bod//,  if  the  axis  of  z  is  vertical,  the 

differential  equation  of  this  barytrope  becomes 

{S-\-g  cos  v)  Dsq=  —  q  DsS-\-  og  sin  v  -f  2  Rv, 

from  which  v  may  be  eliminated  by  means  of  the  equation 

v2  =  (>  ( S  -\- g  sin  v) . 

In  this  case,  the  differential  equation  of  the  taidobaryd  is 

(a  -\-g  cos  v)  Ds  q  =  Sg  sin  v  -j-  2  7?^. 

650.  When  the  resistance  is  constant,  the  equation  of  the  barytrope 

of  §  648  is 

o  ( S  +  F co s / )  =  2  ( £1  -f  //)  -f  2  ,  JZ. . 

i;i  #w  c«sc  o/"  //^  /^#ry  £o«^,  this  equation  becomes 

SDv8-\-gcozvDv8  =  2ge  +  2  11+  2  s  Rv; 

and  that  of  the  taidobaryd  is 

[a-\-g  cos  v)b+3Q  ==  A  \_g  -{-  a  cos  v  -J-  sin  v  \/(^2  —  «2)]*, 

if  J.  is  an  arbitrary  constant, 

and 

But  if 

the  equation  of  the  taidobaryd  is 

,        \q,       ,  sol  2  Rv  r_n'7  +  f<!C0S1; 
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When  there  is  no  resistance,  the  tautobaryd  of  the  heavy  body  is 

defined  by  the  equation 

__  A 
^        '  {A-\-g  cos*')3 ' 

651.  When  &'  vanishes,  there  is  no  pressure  against  the  bary- 
trope, and  this  curve  is  that  on  which  the  body  moves  freely. 

Thus  the  equation  of  the  barytrope  of  the  heavy  body  becomes, 

under  this  condition, 

A 
^  ~  (cos  vf ' 

ivhicli  is  that  of  a  parabola. 

652.  When  the  curve  of  the  barytrope  is  given,  the  equations  (37027) 

and  (37031),  determine  the  laiv  of  the  fixed  force  ivhen  that  of  the  re- 

sistance is  hioivn,  or,  reciprocally,  that  of  the  resistance,  when  the  fixed 

force  is  known. 

653.  When  the  forces  are  parallel  to  the  axis  of  z,  the  equation 

(37031)  becomes^ 

AW.)  +  ̂ ^  =  2JJ„ 

ivhich  is  applicable  when  the  curve  is  given. 

When  there  is  no  resistance,  this  equation  gives 

Fy  cos3v  =  —J^[cos2vDs  (#<>)]  =— fv[cos2vZ>v  (#(>)]. 

654.  In  the  case  of  parcdlel  forces,  when  the  tautobaryd  is  a 

circle,  and  there  is  no  resistance,  the  fixed  force  has  the  form 

F=-^ 

Q  COS3  V in  which  b  and  J7  must  vanish,  if  v  can  become  a  right  angle. 



When  the  fixed  force  is  that  of  gravity,  and  the  tautobaryd 

is  a  circle,  the  expression  of  the  resistance  is 

Xv=— y(r— «)• 

655.  In  the  case  of  parallel  forces,  when  the  tautobaryd  is  a 

cycloid  of  which  the  base  makes  an  angle  a  with  the  direction  of 

the  parallel  forces,  and  when  there  is  no  resistance,  the  equation  of 

the  cycloid  being 

o  =  2  R  sin  (v  —  a), 

the  expression  of  the  force  is 

j-j   a  sin  (r  —  a)  -j-  ̂  a  sin  (3  v  —  a)  -\-  ̂  a  sin  (v  -\-u)  -\-b 

2  sin  (v  —  «)  cos3  v 

When  b  vanishes  and  a  is  a  right  angle,  this  expression  is  re- 
duced to 

F=  i  a  cosecv, 

which  coincides  with  Euler's  solution  of  this  example. 

THE    STNCHRONE. 

656.  The  surface  or  curve  which  is  the  locus,  at  any  instant, 

of  all  the  bodies  which  start  simultaneously  from  a  given  point 

with  a  given  velocity,  and  move  upon  paths  which  are  related  by 

a  given  law,  is  called  a  sf/nchrone,  and  the  given  starting  point  may 

be  called  its  dynamic  pole.  This  class  of  loci  was  first  discussed  by 
John  Bernoulli. 

657.  If  an  integral  of  the  motion  of  the  body  along  one  of 

the  paths  to  the  synchrone  is  obtained  in  the  form 
W=0, 
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in  which  W  is  a  function  of  the  time,  of  the  arc  of  the  path,  and  of 

the  parameters  by  which  the  relationship  of  the  paths  is  expressed ; 

this  equation  is  the  required  equation  of  the  synchrone,  if  the  time  is  as- 

sumed to  be  constant ;  and  it  is  referred  to  the  system  of  coordinates,  con- 

sisting of  the  described  arc  and  the  given  parameters. 

658.  If  the  only  force  is  that  of  a  resisting  medium,  and  if 

the  form  of  the  path  is  given,  and  also  the  position  of  the  dynamic 

pole  upon  it,  but  not  its  direction  in  space,  the  synchrone  is  obviously 

the  surface  of  a  sphere,  of  which  the  dynamic  pole  is  the  centre. 

659.  If  the  body  moves,  without  external  force  and  without 

resistance,  upon  a  straight  line,  which  rotates  uniformly  about  a 

given  axis  passing  through  the  dynamic  pole,  the  synchrone  is  a 

surface  of  revolution  about  the  same  axis,  and  it  is  defined  by  the  polar 

equation  (25020)  or  (2513)  when  p  vanishes  and  t  is  constant. 

660.  When  the  fixed  forces  are  directed  toivards  a  point,  or  ivhen 

they  are  parallel,  the  synchrone  of  bodies  moving  upon  straight  lines,  is  a 

surface  of  revolution,  of  which  the  axis  is  the  line  of  action  which  passes 

through  the  dynamic  pole. 

661.  In  the  rectilinear  motion  of  a  heavy  body,  it  is  obvious  from 

(25513),  that  the  polar  equation  of  the  synchrone  has  the  form 

r  =  a  cos^-j- b, 

which  becomes  a  sphere,  when  b  vanishes,  that  is,  when  the  initial  velocity 
vanishes. 

662.  In  the  rectilinear  motion  of  a  heavy  body  through  a  medium, 

of  which  the  resistance  is  proportional  to  the  square  of  the  velocity,  the 

polar  equation  of  the  synchrone  has  the  form, 

Acr=Cos(Bcosirz). 
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TriE    SYNTACHYD. 

663.  The  surface  or  curve  which  is  the  locus  of  all  the  points, 

at  which  bodies  have  the  same  velocity,  when  they  move  from  a 

given  point,  with  a  given  velocity,  upon  paths  which  are  related  by 

a  given  law,  may  be  called  a  syntachyd. 

664.  If  an  integral  of  the  motion  of  a  body  along  one  of  the 

paths  which  proceed  to  the  syntachyd  is  obtained  in  the  form 
W=  0, 

in  which  W  is  a  function  of  the  velocity,  of  the  described  arc,  and 

of  the  parameters,  this  equation  is  that  of  the  syntachyd  in  the 

same  form  of  coordinates  with  those  in  which  the  synchrone  of 

§  657  is  expressed. 

665.  In  the  case  of  §658,  the  syntachyd  coincides  with  the  syn- 
chrone. 

666.  In  the  cases  of  §§659  and  660,  the  syntachyd  is  a  surface  of 

revolution  about  the  same  axis  ivith  the  synchrone. 

667.  When  the  action  is  exclusively  that  of  fixed  forces,  the  syn- 

tachyd is  a  level  surface. 

668.  When  a  heavy  body  moves  upon  a  straight  line,  on  which  there 

is  a  constant  friction,  and  through  a  medium  of  ivhich  the  resistance  is 

proportional  to  the  square  of  the  velocity,  the  equation  of  the  syntachyd  is 

c-2hr  —  A  =  B  cos  (;  +  «), 

in  which  the  notation  of  §  515  is  adopted,  A  and  B  are  constants 
and 

a  =  g  tan  a  . 

669.  When  a  heavy  body  moves  upon  a  straight  line,  on  which 

the  friction  is  constant  and  through  a  medium   of  ivhich  the  resistance  is 
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proportional  to  the  velocity,  the  equation  of  the  syntachyd  has  the  form 

670.  When  the  body  moves  upon  a  line  on  which  the  friction  is 

constant  and  through  a  medium  of  which  the  resistance  is  proportional  to  the 

square  of  the  velocity,  the  equation  of  the  syntachyd,  expressed  in  the  form 

of  coordinates  of  §  657,  is 

(kv2-\-  A)  c2ks=fs(DsQ  c2sh), 

which  coincides  with  Jacobi's  investigation  of  this  case  of  motion. 

A  POINT  MOVING  UPON  A  FIXED  SURFACE. 

671.  Among  the  various  forms,  in  which  the  motion  of  a  point 

upon  a  fixed  surface,  with  fixed  forces,  can  be  discussed,  that  of  the 

principle  of  least  action  is  here  selected.  In  this  case,  therefore, 

the  whole  amount  of  action,  denoted  by 
v=f,"' 

is  to  be  a  minimum.     If,  then,  the  equation  of  the  surface  is ■L=0, 

if  rectangular  coordinates  are  adopted,  if  ̂   is  the  multiplier  of  the 

preceding  equation  of  the  surface,  and  ̂   that  of  the  conditional 

equation 

the  equation  of  the  path  of  the  body,  with  reference  to  either  axis,  is 

Dxv-^-\ixDxL — Ds  (fiaf)=0. 
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The  sura  of  these  three  equations,  multiplied  respectively  by  x' ,  y', 
and  z\  is 

Dsv  =  Ds\i, 

or 

Whence 

Dx  v  -f  ih  DXL  —  DS  (v  x)  =  0 . 

672.  If  the  tangent  plane  to  the  given  surface  is  assumed,  at 

each  instant,  to  be  that  of  xy,  and  if  the  axis  of  y  is  taken  normal 

to  the  path  of  the  body,  the  preceding  equation  becomes,  if  ()j  de- 

notes the  radius  of  curvature  of  the  projection  of  the  path  upon  the 

tangent  plane, 

so  that  the  centrifugal  force  of  the  body  in  the  direction  of  the  surface  to 

which  it  is  restricted  is  equal  to  the  normal  pressure  upon  the  path  in  the 

direction  of  the  tangent  plane. 

673.  When  the  direction  of  the  force  is  normal  to  the  surface,  which 

is  the  case  ivith  the  level  surface,  or  when  there  is  no  force,  the  path  of  the 

body  is  the  shortest  line  which  can  be  drawn  upon  the  surface,  and  coincides 

ivith  the  br achy stochr one. 

674.  When  the  velocity  is  constant,  the  equation  (37713)  expresses  the 

condition  that  the  body  may  move  upon  the  intersection  of  a  level  surface 

ivith  the  given  surface.  In  this  case  qx  is  the  radius  of  curvature  of  this 

intersection,  and  Dy  S2  is  the  whole  force  in  the  direction  of  the 

tangent  plane  to  the  surface. 

675.  When  the  velocity  is  a  given  function  of  the  parameter  of 

the  level  surface,  the  equation  (37713),  with  the  notation  of  the  pre- 

ceding section,  expresses  the  equation  of  a  surface  over  which  the 

body  moves  upon  the  intersection   of  this  surface   with  the  level 
surface. 

48 
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676.  When  the  force  is  directed  towards  the  origin,  and  the  given 

surface  is  a  plane  passing  through  the  axis,  the  equation  (377i3),  com- 
bined with  (31618),  gives  in  the  notation  of  §  569 

D,..Q    _  _        2  _  2  D,.p 

Si  —  Si0  ~  q  sin  rs  ~  p     ' 

of  which  the  integral  is 

n      Q       !Zi   1  ?,2   I    T)    «j2 '-"-•   "i-o         y    2  "       2  -t-'t  »    • 

Whence,  if  (p  is  the  angle  which  r  makes  with  the  axis, 

1       2    T\  9 ir*Dty=pl. 

But  2  r2c/g)  is  the  elementary  area  described  by  the  radius  vector  in 
the  instant  dt,  and  it,  therefore,  follows  that  the  area  described  bg  the 

radius  vector  is  proportional  to  the  time. 

The  equation  (378n),  combined  with  that  of  living  forces,  gives 

Dts*=py  +  riI)t<p*  =  I>tri+^=2(£2  —  S2Q), 

r^—  Dtr~  rs/[(2r2(J2  —  i20)_ ±p*]> 
Whence 

2  pi   

^  "  "  I-  r  v/  [2  i*(J2  —  ̂ 20)  —  4$]  : 

-I 

which  is  the  polar  equation  of  the  path  of  the  bodg.  That  this  equation 

can  be  obtained  by  integration  by  quadratures,  is  a  simple  case  of 

the  principle  of  the  last  multiplier. 
677.     When  the  potential  of  the  force  has  the  form 

Q  =  — 

and  the  initial  velocity  is  such  that 
o  —  o 
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or 

„2    9  f)  — \l 

the  polar  equation  of  the  path  of  the  bod//  is 

plrn-'  =  ̂ (Ut)sm  [0  — l)(fjp  — «)], 

which  was  given  by  Eiccati. 
If n=  i, 

the  law  of  the  force  is  that  of  gravitation,  and  the  path  is  a  parabola  of 

which  the  origin  is  the  focus. 
If 

n  =  1, 

the  attractive  force  is  inversely  proportional  to  the  cube  of  the  radius  vector, 

and  the  path  is  a  logarithmic  spiral,  which  was  proved  by  Newton. 
If n  =  |, 

the  attractive  force  is  inversely  proportional  to  the  fourth  power  of  the  radius 

vector,  and  the  path  is  the  epicycloid  formed  by  the  exterior  rotation  of  a 

circle  upon  an  equal  circle,  which  was  proved  by  Stader. 
If n  =  2, 

the  attractive  force  is  inversely  proportional  to  the  fifth  poiver  of  the  radius 

vector,  and  the  path  is  the  circumference  of  a  circle,  which  was  proved  by 
Newton. 

If 

the  attractive  force  is  inversely  proportional  to  the  sixth  poiver  of  the  radius 

vector,  and  the  path  may  be  called  the  trifolia  of  Stader,  by  whom  it  was 

investigated. 
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If n  =  d, 

the  attractive  force  is  inversely  proportional  to  the  seventh  poivcr  of  the 

radius  vector,  and  the  path  is  the  lemniscate  of  James  Bernoulli,  which 

was  proved  by  Staler. 
If 

n  ==  —  1 ,  - 

the  repulsive  force  is  proportional  to  the   radius  vector,  and  the  path  is 

an  equilateral  hyperbola. 

When n<l, 

r  becomes  infinite  when  (<p  —  a)  vanishes,  which  was  remarked  by 
Staler. 

678.     When  the  values  of  £2,  S20  and  px  are  such  that,  if  R  is 

an  integral  function  of  an  integral  root  of  r, 

,     R  =  sJ[2r*(tt-S20)-±pf], 

the  expression  of  (p  in  (37822)  admits  of  integration.  For  if  the 

integral  root  of  r  is  denoted  by 

mi 9\=  \Jr, 

and  if  the  notation  of  the  residual  calculus  is  adopted,  the  equa- 

tion (37822)  becomes 

log(Vr—  r}) o         2  C    1  o         2  r     log(Vr_ 

V  =  2  m&Jr  ̂R  =  2  "A  ̂   -%H 

679.     An  example  of  the  preceding  section  occurs,  when  m 

is  unity  and 

R=.af"  -\-br  -\-c, 
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which  corresponds  to 

1  '      r      '         2  r2      ' 

S20  =  —  -H2—ae, 

and  an  attractive  force  of  the  form 

2  i     i     l>e    i     e2-\-4n\ —  a2r  —  «*  +  75-H — -75-^  • 

In  this  case  the  value  of  9  is 

cp  —  a  =  -  log  -75   .  .,       — 777  tan1   iJ -7-7-7   — t?, , 
'  e       ̂   H        e\J(±ae —  b1)  \J(4ae  —  b2)' 

Pi -1       r2     1  2  5pf  ̂       r_11     2ar-\-e 
=  — loff-^-1   ,  .,.,      , — r  Tan1    ] -7-777, — l. — r, 

e       °  H    '    e\J  (b1  —  4  a  e)  \J  (V  —  4  a  e) 

When  b  vanishes,  these  expressions  become 

J20  =  —  ae, 

the  attractive  force  is 

2       1    e2  +  4/^ 

and  the  equation  of  the  path  is 

When  e  vanishes,  the  expressions  become 

S2  =  ia2r2  +  al>r-\-2-4, 

n»  =  —  u\ 
the  repulsive  force  is 

2      1       7        4:  Pi a  r-+-ab   V » 1  r> 
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and  the  equation  of  the  path  is 

«   5  (<P  —  a)  =  locr  («4--)  —   • 2  ap{  vr  '  &  \      '    rf        r 

When  Z»2  —  4  a  e  vanishes,  the  equation  of  the  path  is 

G80.     Another  example  of  §678  occurs  when 

B  =  ar.+  b+ep 
which  corresponds  to 

n0=—u2, 
and  an  attractive  force  of  the  form 

ab        J*_|_2ae  +  4;»J    ,    She    ,    2  e2 

The  equation  of  the  path  is    ■ 

2ar-f  &  =  v^(4ag  — y)tan[^(4^7y)(y— a)] 

When  a  vanishes,  the  value  of  I20  vanishes,  the  attractive  force  is 

tf  +  Apt    ,    3be    ,    2e2 

and  the  equation  of  the  path  is 

log  (br-\-e)  =  j-i(<p  —  a). 

When  P  —  4  a  e  vanishes,  the  equation  of  the  path  is 

2ar  +  b=   4p' 

a  —  (jp 
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681.  Another  example  of  §  678  occurs  when 

fi  =  Ar'l  +  B, 
in  which  case 

and  the  equation  of  the  path  is 

^|(a-9))  =  log(l-ffr-^). 

682.  The  forms,  in  which  (37822)  admits  of  explicit  integration 

without  any  special  determination  of  S20  and  p,  are  included  in  the  gen- 

eral expression 

in  which  h  is  two,  or  the  negative  of  unity,  so  that  12  only  consists  of  tivo 

terms,  of  which  one  is b_ 

and  the  general  form  of  the  centred  force  consists,  therefore,  of  two  terms 

of  which  one  is  inversely  proportional  to  the  cube  of  the  radius  vector,  and 

the  other  may  be  either  directly  proportional  to  the  radius  vector,  or  in- 

versely proportional  to  the  square  of  the  radius  vector. 

683.  In  general,  it  is  apparent  that  the  addition  of  a  term  to 

the  central  force,  which  is  inversely  proportional  to  the  cube  of  the 

radius  vector,  does  not  augment  the  difficulty  of  determining  the 

path  of  the  body.  In  any  equation  of  a  path  of  a  body  described 

under  the  action  of  central  forces,  which  is  expressed  by  the  elements 

(p  —  a,v  and  t,  and  which  may  also  involve  the  constant  p1?  the  multi- 

plication of  the  angle  w  —  a ,  and  of  p^  by  the  factor 

*=^-^) 
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gives  the  equation  of  the  path,  when  the  central  force  is  increased  hy  the 
term 

b_ 

684.  When  there  is  no  force  the  path  is  a  straight  line,  so  that 

ivhen  the  central  force  is  inversely  proportional  to  the  cube  of  the  radius 

vector,  the  polar  equation  of  the  path  is 

r  cos  [B  (cp  —  «)]  =  B  p\  i/  ■ 

If  the  force  is  repulsive,  B  exceeds  unity,  the  path  is  convex  to  the 

origin,  and  its  convexity  increases  with  the  increase  of  the  repulsive 

force  until  it  terminates  in  a  straight  line.  If  the  force  is  attractive, 

and  B2  positive,  it  is  less  than  unity,  the  path  is  concave  to  the 
origin  but  of  infinite  extent,  and  the  concavity  increases  with  the 

increase  of  the  attractive  force  until  it  terminates  in  the  reciprocal 

spiral  of  Akchimedes.  If  the  force  is  attractive,  B2  negative  and 
S20  positive,  the  equation  of  the  path  is 

r  Cos  \B  (9  —  a)  \j  —  1]  =  B p\  J  ̂  

iV 

so  that  the  greatest  distance  of  the  path  from  the  origin  is  limited, 

and  the  path  is  a  spiral  about  the  origin  in  which  it  terminates,  at 

each  extremity,  through  infinitely  compressed  coils.  If  the  force  is 

attractive,  and  B2  and  12  0  negative,  the  equation  of  the  path  is 

rSin[B(cp-a)s/-l-]=BplsJ±, 

so  that  the  curve  extends  to  an  infinite  distance  from  the  origin  at 

one  extremity,  and  terminates  in  an  infinitely  condensed  coil  about 

the  origin  at  the  other  extremity.     In  these  three  cases,  the  formula 
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for  the  time  which  corresponds  to  (3849)  is 

t  =  —  £*tan[i(g>  — a)], 

the  formula  for  (38420)  is 

t  ===■  Bp^~ 1  Tan  [i?  (y  -  a)  V  - 1] , 

and  that  for  (38427)  is 

^  =  ̂=-1Cot[5(9)-a)v/--l]. 

This  law  of  central  force  has  been  discussed  by  several  geometers, 

and,  with  peculiar  regard  to  the  special  cases  of  the  problem,  by 

Stader,  whose  results  coincide  substantially  with  those  of  this 
section. 

685.  When  the  central  force  is  proportional  to  the  radius  vector, 

the  path  is  a  conic  section  of  ivhich  the  centre  is  at  the  origin.  It  is  an 

ellipse,  if  the  force  is  attractive,  and  an  hyperbola,  if  the  force  is  repulsive. 

In  the  case  of  the  ellipse,  if  a  point  were  to  start  from  the  ex- 

tremity of  the  major  axis  at  the  same  instant  with  the  body,  and 

move  upon  the  circumference  of  which  this  axis  is  the  diameter, 

with  such  an  uniform  velocity  as  to  complete  its  circuit  synchro- 

nously with  the  body,  the  body  and  the  point  are  always  upon  a 

straight  line  which  is  perpendicular  to  the  major  axis.  For  dif- 

ferent ellipses,  the  time  of  description  is  proportional  to  the  square 

root  of  the  area.  In  the  case  of  the  hyperbola,  if  a  catenary  is 

drawn  through  the  extremity  of  the  transverse  axis,  in  such  a 

position  that  this  axis  is  the  direction  of  gravity,  while  its  ex- 

tremity is  the  lowest  point  of  the  catenary,  and  of  such  a  mag- 

nitude that  the  radius  of  curvature  of  the  catenary  at  this  point 

is  equal  to  the  semi-transverse  axis,  and  if  a  body  starts  upon  the 49 
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catenary  simultaneously  with  the  given  body,  and  proceeds  in  such 

a  way  as  to  recede  uniformly  from  the  transverse  axis  with  a 

velocity  equal  to  that  of  the  given  body  at  its  nearest  approach 

to  the  origin,  the  line  which  joins  the  two  bodies  will  always  re- 

main perpendicular  to  the  transverse  axis  of  the  hyperbola. 

686.  When  in  addition  to  the  term,  which  is  proportional  to  the 

radius  vector,  the  central  force  has  a  term  inversely  proportional  to  the 

cube  of  the  radius  vector,  the  path  can  be  derived  from  the  preceding 

section  by  the  principle  of  \  683. 

When  the  term  which  is  proportional  to  the  radius  vector  is 

attractive  and  expressed  by 

a  r, 

the  polar  equation  
of  the  curve  is 

i^-1  -f  I20  =  v/  \fl\  —ia B2pf]  cos  [2  B(cp  —  a )] 

=  v/  [S2l  —  4:aB2pf]  Cos[2B((p  —  a)  y/—  1] 

=  y/  [4:aB2p\  — 1220]  Sin  [2B((p  —  a)  y/— 1]. 

When  a  is  positive,  therefore,  the  path  does  not  extend  to  infinity, 

although  when  B2  is  negative  it  is  compressed  at  each  extremity 
into  an  infinite  coil.  But  when  a  is  negative,  the  term  propor- 

tional to  the  radius  vector  is  repulsive,  and  the  curve  extends  to 

infinity  if  B2  is  positive  ;  but  if  B2  is  negative  the  curve  is  limited 
if  S20  is  negative,  or  it  may  necessarily  extend  to  infinity  if  S20  is 

positive. 
In  the  special  case  of 

tan  (2  n  Bn)   p\ 
2  B  ii0 

y/  —  a. 
the  curve  is  asymptotic  to  itself. 

687.      When  the  central  force  is  inversely  proportional  to  the  square 
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of  the  radius  vector  ivliich  is  the  law  of  gravitation,  the  path  is  a  conic 

section,  of  ivhieh  the  origin  is  the  focus.  When  the  force  is  attractive,  the 

path  is  an  ellipse  if  S20  is  positive,  a  parabola  if  S20  vanishes,  and  it  is 

that  branch  of  the  hyperbola  ivhieh  contains  the  focus,  if  S20  is  negative. 

But  ivhen  the  force  is  repulsive,  the  path  is  that  branch  of  the  hyperbola 

ivhieh  does  not  contain  the  focus.  The  farther  consideration  of  this  law 

of  force  is  reserved,  in  this  connection,  for  the   Celestial  mechanics. 

688.  When  in  addition  to  the  term,  ivhieh  is  inversely  proportional 

to  the  square  of  the  radius  vector,  the  central  force  has  a  term  inversely 

proportional  to  the  cube  of  the  radius  vector,  the  path  can  be  derived 

from  the  preceding  section  by  the  principle  of  §  683. 

If  the  term  of  central  force,  which  is  inversely  proportional 

to  the  square  of  the  radius  vector  is 

the  polar  equation  of  the  path  is 

i^_a  =  v/(a2_8/20i?2^)cos[i?(9)  —  «)] 

=  y/  (a2  _  8  i20  B2p\)  Cos  [B  (cp  —  a)  y/  —  1] 

=  yj  ( 8  £20  B2p\  —  a2)  Sin  [B  (9  —  a )  y/  —  1] , 

when  S20  is  positive,  therefore,  the  curve  is  finite ;  it  returns  into 

itself  if  B2  is  positive,  but  if  B2  is  negative  it  terminates  at  each 
extremity  in  an  infinitely  compressed  coil  about  the  origin.  When 

I20  is  negative,  one  portion  at  least  of  the  path  extends  to  an  in- 

finite distance  from  the  origin ;  if,  moreover,  a  is  positive  and  B2 
negative,  but  such  that 

a2>8S2,B2pi, 

another  portion  of  the  path  is  finite  and  terminates  in  the  origin, 
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through  an  infinitely  compressed  coil,  while  the  two   infinite  por- 

tions commence  in  such  a  coil ;  if  the  negative  B2  is  such  that 

di<8S20B2p\ 

or  if  a  is  negative  as  well  as  S20,  the  curve  only  consists  of  the 

portion  which  extends  from  the  coil  to  infinity.  The  time  may  be 

computed  by  the  three  formulas,  which  correspond  to  the  three 
forms  of  (387M), 

Tan  [^  (^2o  +  \/  y&pl  +  ii2«)  V  Sln  V*  (y-°)V-l])] 

=    -]££»%*  Tan[^(y-.)V/-1]?      • 

rnt^^^o  +  v/^-^^rCos^^-.)^-!])] 
_a  — y/ (8  .<20  #>*  —  <)  p       fl  p,  .     ,         -,-, 

--7(Z87VB^)        b0t|_2^(9—  aJV  —  1J, 

the  upper  of  the  double  forms  of  the  first  member  applies  to  the 

case  in  which  S20  is  positive,  and  the  lower  to  that  in  which  /20  is 

negative.     This  case  was  partially  developed  by  Clairaut. 

689.  The  principle  of  §  683  may  be  extended  to  §  677,  and 

among  the  resulting  curves,  that  in  which  n  is  2,  deserves  to  be 

noticed  from  its  simplicity,  the  equation  of  this  case  is 

f1r  =  ̂ smlB(cp-a^=^1SmlB((p--a)sl-l-]. 
690.  The  laiv  of  central  force,  for  which  the  integrals,  involved  in 

the  equations   of  motion,   can   be   expressed   ly   the  elliptic  forms  without 
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any  special  determination  of  S20  and  p1?  may  he   reduced  to  two  general 

forms  of  algebraic  polynomial  besides  other  fractional  forms. 
The  first  of  these  forms  is 

—  3 

F=birim-3-\-b3r3m-3  +  b2r2m-3-\-b1rm-3-{-br 

in  which  m  is  either  2,  1,  -f,  or  -|-. 
The  second  form  is 

F=  b,  r2'"-3  -|-  b3  rm~3  -f  h  r~z  +  h  r~m~3  +  b  r~2m~3, 

in  which  m  is  either  1  or  2.     In  each  of  these  cases  the  term  which 

is  inversely  proportional  to  r  must  be  omitted. 

691.     In  the  first  case  of  the  preceding  section,  when  m  is  unity, 

the  equation  (07822)  acquires  the  form 

2  pi 

'"        J-^V/(a^4  +  «3 z3  r3  -\-  a2  r3  -f-  ax  r  -\-  a)  ' 

It  is  obvious  from  inspection  that  whenever 

is  positive,  a  portion  of  the  curve  extends  to  infinity;  but  when- 
ever «4  is  negative,  the  curve  is  of  finite  extent.  It  is  also  apparent 

that  whenever 

a  =  —  4:B2pt, 

is  positive,  a  portion  of  the  curve  terminates  in  an  infinitely  com- 

pressed coil  about  the  origin,  that  no  portion  of  the  curve  can  ap- 
proach the  origin  except  through  such  a  coil,  and  that  when  a  is 

negative,  the  curve  does  not  pass  through  the  origin. 

If  all  the  roots  of  the  equation 

a4  r4  -\-  a3  r3  -f-  a2  r2  -f-  ax  r  -J-  a  =  0 , 

are  imaginary,  «4  and  a  must  be  positive,  and  the  curve  extends 
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continuously  from  the  origin  to  infinity.  If  the  moduli  of  the  roots 

are  h  and  hly  and  the  arguments  a  and  a1}  and  if  the  following 

notation  is  adopted 

I       _  2  «4  (A»  +  MY  —  4a P  "I"  ?  —    2  fll  —  a3  (A2  +  A?)  ' 

_  2  aas  —  (h2  -\-  Itf)  ax  ai 

A2=(p  —  lif  +  4  jk>  h  sin2  £  a , 

A\  =  (j»  —  y^)2  +  4  jo  /^  sin2  £  ax, 

i?2  =  (y  _  hf  -\-iqli  sin2  £  a, 

i?2=(^  —  A1)a+4?A1sinaia1,- 

cos^: 

'^i  (?  — *■)' 
AXB 
a~bx> 

and  if  $0  is  the  value  of  0  when  r  vanishes,  the  equation  of  the 
curve  is 

AAJM(i-fi**b0)  (    _^  =  V(l-si^-sin^0)         og2     +      .n2       j 2p\{p —  £)2cos20o         xr         '  (p — q)coa-d0      yi  u   '   u  u/ 

-j^y  (X  -  sin2 /sin2  <W  ̂   (-  cosec2  d0,  6) 
,        y/  (1  —  sin2 «  sin2  (9)  —  y/  (1  —  sin2  i  sin2  0O)  _ 

°~  y/(sin20  — sin20o)  "' 

and  the  expression  of  the  time  is 

A  Ax  q2  tan  d0  (t  —  r)      /  p2  +  <?3  cos2  i  tan2  #0   y  (p  cot2  #0  +  #)  y/  (/>2  +  <?3  cos2  i  tan2  #0) 

~¥Xl—p){l  —  r)    V        p2cot20o  +  ?2  (?  +  '•)(/ cot2 ^0+?2)f 

<7  G°2  +  .P  ?)  V  (P2  +  ?2  cos2  *  tan2  ̂ o) + 
(q  —  r)  tan3  60  {f  cot2  60  +  ?2)> 

I    i        sl{.(P2  c°t2^o  +  ?2)  (1 — sin2t'sin20)] — y/ ( jo2 cot2 #0  +  f?3 cos2 i) 
'      °^  "  ~~ VO2 cot2 0O sin2 0  —  q2 cos2l?)~ 
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The  elliptic  integrals  disappear  when 

which  case  has  already  been  discussed  in  §  686.     They  also  disap- 

pear when  the  imaginary  roots  are  equal,  in  which  case 

a2        a2 -  =  -1  =  4  «2  —  8  \I  (a  a4) : 
a4        a  tv*/' 

so  that  if 

fi=2a3  «4  r2  -f-  a|  r  -J-  2  «!  «4, 

the  expressions  for  cp  and  t  are 

<p__a=ZLW^   2o»>?  tari-1!      (4  gj  -r +^VJ!l_ 
*  \J  a      °  R        y/[a1a3a4  (16  a  a4  —  ai03)]  y'  [a3  (16  a  or4  —  crx  a3)]  ' 

^  —  t  =  —  loa-  72  _  t  / f  g'q»  )  tant-^      (4a*r  +  «3)vS    _ 2y/«4      °  V    \a4(16aa4 — axa^)/  y/[a3(16aa4 —  ̂ 03)] 

When  two  of  the  roots  of  the  equation  (38929)  are  real  and 

two  are  imaginary,  if  both  the  real  roots  are  negative,  «4  and  a 

must  be  positive,  and  the  curve  extends  continuously  from  the 

origin  to  infinity.  If  one  of  the  real  roots,  denoted  by  rlf  is  posi- 

tive, and  the  other,  denoted  by  r2,  is  negative,  and  if  a4  is  positive, 

the  curve  extends  to  infinity  at  each  extremity,  and  i\  is  its  least 

distance  from  the  origin ;  but  if  a4  is  negative,  the  curve  is  finite, 

terminates  at  each  extremity  in  the  origin,  and  i\  is  its  greatest 

distance  from  the  origin.  If  both  the  real  roots  are  positive  and 

if  a4  is  also  positive,  the  curve  consists  of  two  portions,  one  of 

which  extends  to  infinity  at  each  extremity,  and  the  greater  real 

root  r1  is  its  least  distance  from  the  origin,  while  the  other  portion 

is  finite,  terminates  at  each  extremity  in  the  origin,  and  r2  is  its 
greatest  distance  from  the  origin ;  but  if  «4  is  negative  the  curve 

consists  of  a  continuous  portion  of  which  rx  is  the  greatest,  and  r2 

the  least  distance  from  the  origin.     If  h  is  the  modulus  and  a  the 
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argument  of  one    of  the   imaginary  roots,  the   following  notation 

may  be  adopted. 

7\  —  h  ca  v_1  =  A  tan  !e  d3  v ~ 1 , 

rx —  hc~a*/-1  =  Atari  h  c-P^-1, 

r2  —  hca"/~1  =  A  cot  ie  (fii"/~1} 

r2  —  hc-a-/-1  =  Acot  h  c~8iv_1, 
TiCot  =|e  =  /cot  £y, 

r2  tan  %e  =  l  tan  £y . 

When  a4  is  positive,  if  $  and  i  are  determined  by  the  equations 

i=i„Jll(P  —  ft) 
tan^cotie  =  y/(^^), 

or 
r  sin  y   cos  y  —  cos  9   sin  i  (8  -\-  y)  sin  ̂   (d  —  y) 

I  sin  e        cos  ?.  —  cos  6        sin  \  (0  -\-  e)  sin  ̂   (0  —  s)  ' 

the  equation  of  the  curve  is 

IA  sin£(m— «W«4       1— cos£Cosy~   .  .  \  rf»  /        •   2      •   a  •  a\ 
  ~~ — —  =   — — '-w^— cot  y  (cosy — cose)^ — sir/sin2^) 

cos  y  —  cos  £ ',       ̂       r_1]sin vsin^y'[l — sin2isin2y)  (1 — sin2z'sin2#)] 
y/(l  —  sin2 1  sin2  j')  1  -)-  cos  y  cos  d  ~\-  sin2  i  sin2  y  sin2  0 

and  the  value  of  (t  —  t)  is  derived  from  that  of  (cp  —  a)  by  multi- 

plying  by  g3  and  interchanging  y  and  s.  It  is  apparent  that  e  is 

obtuse  and  exceeds  y,  and  that  upon  the  finite  portion  of  the 

curve  6  extends  from  zero  to  y,  while  upon  the  infinite  portion, 

it  extends  from  £  to  n. 

When  «4  is  negative,  if  &  and  i  are  determined  by  the  equations 

tan  i<3  cot  2«  =  v/  (7-377  > 
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or 

r  sin  y   1  —  cos  y  cos  d 

I  sin  s        1  —  cos  s  cos  d ' 

the  equation  of  the  curve  is 

I A  sin  £  sin  2  y  (<p —  aW — a4  •    <>     err  a     \    /  \  jw  /      ,        i\ 
  j-i   —    =  sin2  /  9^  6  -J-  (cos  y  —  cos  e)  ̂  (cot  y,  d) 

I    (cos  j'  —  cos  s)  cos  j'  ,       |-_j]      /  /cot2  2'  -\-  sin2  A 

~T    ̂ (cot2y  +  sin2t)  y   \cot2  0  -j-  cosat7  > 

and  the  value  of  (t  —  t)  is  derived  from  that  of  (cp  —  a)  by  multi- 

plying by  g"— 2  ̂ nd  interchanging  /  and  e. 
The  elliptic  integrals  disappear  when  the  two  real  roots  are 

equal.  In  this  case,  a4  is  positive,  and  the  curve  is  continuous  from 

the  origin  to  infinity.     With  the  notation 

R2  =  r2  -\-h2  —  2  r  h  cos  a  =  (r  —  h  cos  a)2  -J-  h2  sin2  a , 

R\  =  r\  -\-h2  —  2  )\  h  cos  a  =  (r1  —  h  cos  a  )2  -\-  h2  sin2  a , 

the  equation  of  the  curve  is 

ri(q>  —  «)  y/a4   1  m „  n[-i]  &— rcos«  _    J_  m      [_i]  h2  —  h  cos  a  (r-f-ri)  -f  r  ̂  
2^2  -A-1"'111  i?  i?i        "  iJi?!  ' 

and  the  expression  of  the  time  is  given  by  the  equation 

(*_T)v/«4  =  Sin[-«^=^-£  Tan^^2-^cos"(;+ri)  +  ̂1. v        -    '  T  A  sin  a  Kx  li  M1 

When  «4  vanishes,  if  rx  is  the  real  root  of  the  equation  (38929), 

the  curve  consists  of  a  single  portion  which  extends  from  the 

origin  to  infinity  when  i\  is  negative,  in  which  case  az  is  positive. 

But  if  1\  and  a3  are  both  positive,  the  portion  extends  to  infinity, 

and  rx  is  its  least  distance  from  the  origin ;  if  r±  is  positive  while 

a3  is  negative,  each  extremity  of  the  curve  terminates  in  the  origin, 

and  rx  is  its  greatest  distance  from  the  origin. 
50 



—  394  — 

When  «3  is  positive,  if  6  and  i  are  determined  by  the  equations 

tan2 1  6 
a  Atan±e~     B*    ' 

the  equation  of  the  curve  is 

,  ™B(q>  —  a)y/aa_        ota        n  +  B'gp  [fa  —  B-f    .1 

j   B(rx-Bf  [_!]  singS/(rf+^-2^r1cos2Q 

~W[ri(ri+jB4—  2^^(50821)]  2^V/Lri(1—  sin2zsin20)]      ' 

and  the  expression  for  the  time  is 

(*_T)v/08=(j_|_JB)g?.d_2i?g^  +  2i?tan^v/(1—  smS'sin2^. 

When  «3  is  negative,  if  6  and  i  are  determined  by  the  equations 

i=h{n—  ft), 

tan2^  =  ̂ -, 

the  equation  of  the  curve  is 

■   ^(^,+-g2)2  Tflti^1;  —  *  ̂ (rf ± Bi+2B2ri cos  2  0 
'    \/[r1(ri-\-Bi-\-2B2r-1cos2i)']  2B^  [rx(l—  sin^'sin2  0)]       ' 

and  the  expression  for  the  time  is 

(zf — t)V — ;«3=(^— ^)^^H-2^M  —  2^tan^v/(1— sin2asin2d). 

When  all  the  roots  of  the  equation  (38929)  are  real,  if,  beginning 

with  the  greatest,  they  are  arranged  in  the  order  of  algebraic 

magnitude,  they  may  be  denoted  by  rly  r2,  rz,  and  r4.  If  they  are 

all  negative,  the  curve  consists  of  a  single  portion  which  extends 

from  the  origin  to  infinity.     But  if  rx  is  the  only  positive  root,  the 
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curve  consists  of  a  single  branch,  which  extends  by  the  same  law 

as  that  expressed  in  (39120).  If  r}  and  r2  are  positive,  while  the 

other  two  roots  are  negative,  the  curve  consists  of  one  or  two  por- 

tions, according  to  the  same  principles  which  distinguish  the  forms 

of  (39125).  If  r4  is  the  only  negative  root,  and  if  #4  is  positive, 

the  curve  consists  of  two  portions,  one  of  which  extends  to  in- 

finity, and  ri  is  its  least  distance  from  the  origin,  while  the  other 

portion  is  finite  and  limited  by  the  circumferences  described  about 

the  origin  as  centre,  with  r2  and  rs  as  radii ;  but  if  a4  is  negative, 

one  portion  terminates,  at  each  extremity,  in  the  origin,  and  rz  is 

its  greatest  radius  vector,  while  the  other  portion  is  contained  be- 

tween the  limiting  circumferences  of  which  rx  and  r2  are  the  radii. 

If  all  the  roots  are  positive  and  if  «4  is  also  positive,  the  curve 

consists  of  three  portions,  one  of  which  extends  to  infinity  and  rx 

is  its  least  distance  from  the  origin,  a  second  portion  is  limited  by 

the  circumferences  of  which  r2  and  r3  are  the  radii,  and  the  third 

portion  passes  through  the  origin  at  each  extremity,  and  r4  is  its 

greatest  radius  vector ;  if  «4  is  negative,  the  curve  consists  of  two 

portions,  one  of  which  is  limited  by  the  circumferences  of  which  rx 

and  r2  are  the  radii,  and  the  other  by  the  circumferences  of  which 

rz  and  r4  are  the  radii. 

When  #4  is  positive,  the  following  notation  may  be  adopted. 

9\  —  r3  =  A  tan  £  e  tan  £  1] , 

ri  —  ri  =  A  cot  £  £  tan  £  /)]1 , 

r2  —  r4  =  A  tan  £  e  cot  £  r\ , 

r3  —  r4  =  A  cot  £  e  cot  £  i]x , 

which  give 

i=z  £n  —  g 

tan2^=tan?
? tan  //! ' 
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Or  sin  (ra  —  v) 
COS  £  = sin  (ft-)- J?) 

For  the  portion  of  the  curve,  which  is  contained  between  the  cir- 
cumferences of  which  r2  and  r3  are  the  radii,  the  notation 

r2  sin  1 1]  —  I  sin  \  % ,     . 

r3  cos  ̂ i]  =  l  cos  h  x , 

•j 

tan2(^-^)=:fnt^-^ v  J         tan  -%?]  {r.2  —  r) 

gives r   sin  ̂   (^  -)-  x)  -(-  sin  \  (^  —  x)  sin  d 

I        sin  i  (?/!  +  tj)  -\-  sin  |-  (^  —  ??)  sin  (9 ' 

The  equation  of  the  curve  is,  then, 

A(y  —  K)y/ci!4 __ sintfa—  ̂ )  oj?  ̂  _|_       sirnfr  sin  ̂   fa  ■— x)       qp I"   sin2!  fa  —  x)   ̂ 1 
2p{lcosi  sin^fa — x)      l    "Tsinifa — x)sin-|-fa-j-x)     lL      sin2  £fa-f- x)'    J 

sin  i  (jj  —  x)  y/ (sin^  cosecx)  rj,  y/ (1 — cos2itan20) 

y/[sin  a^  sin  x  —  sin2  i  sin2^  fa-|-  x)]  y/  [1 — sin2  a  sin2  ̂   fa-f-  k)  cosec^  cosec  x] 

and  the  expression  for  the  time  may  be  obtained  from  this  value 

of  (cp  —  a )  by 'interchanging  x  and  iy  and  multiplying  by  — f-1. 

The  nature  of  the  motion  through  the  space  exterior  to  the 

circumference  of  which  rx  is  radius,  and  within  the  circumference 

of  which  r4  is  radius,  may  be  derived  from  equations  (3965_15)  by 

changing  r3  to  rx  and  r2  to  i\  and  augmenting  each  of  the  angles 

r]  and  %  by  the  magnitude  n. 

When  %  is  negative,  the  following  notation  may  be  adopted, 

rx  —  rs  =  A  tan  h  £  tan  i  i] , 

7*2  —  r±  =  A  tan  I  e  cot  h  t] , 

i\  —  ?4  =  A  cot  k  s  tan  £  i^ , 

r2,  —  r3=  A  cot  h  e  cot  -|"  ̂i , 

i  =  I  %• 

The  nature  of  the  motion  between  the  circumferences  of  which 
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rz  and  r4  are  the  radii  may,  then,  be  expressed  by  the  equations 

(3965_15),  provided  that  rs  is  changed  to  ri}  and  r2  to  r3  and  the 

sign  of  a4  is  reversed.  The  character  of  the  motion  between  the 

circumferences  of  which  rx  and  r2  are  the  radii,  may  be  expressed 

by  the  same  equations  with  the  change  of  i\  to  r2,  and  of  r2  to  r4, 

the  reversal  of  the  sign  of  a4,  and  the  increase  of  each  of  the 

angles  t]  and  x  by  n. 

The  elliptic  integrals  disappear  when  two  of  the  roots  are 

equal ;  in  this  case,  if  ?\  denotes  one  of  the  equal  roots,  and  if  R2  is 
the  quotient  of  the  division  of  the  first  number  of  (38929)  by 

(r — rx)2  so  that  the  form  of  R2  is 

R2  =  h2  r2  -J-  hi  r  -\-  h, 

the  notation  may  be  adopted 

2  h  -\-h1r  =  2R  sj—  h  tan (6  \]—h)  =  —  2R\/h  Tan  (6  sjh) , 

Jh -\-2h2r=2R <J—h2  tan  ($2sJ—/h)  =  —  2R\Jh2  Tan ($2 y//;2), 

hri+?RR\+h)r=  -  ̂ — 1  tan  Wi  V - 1)  =  Tan  {Rx  6,)  y 
the  equation  of  the  curve  is 

and  the  expression  of  the  time  is 

t  —  T  =  62-\-r161. 

When  #4  vanishes,  if  az  is  positive,  the  notation  may  be  adopted 

rx  —  r2  =  B2  tan2  \  e , 

rx  —  r3  ==  B2  cot2  h  e , 

r2  cos2  ie  =  l cos2  h * , 

r3  sin2 1  e  =  I  sin2  h,  x , 
i=  in  —  e  ; 
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and  for  the  portion  of  the  curve  contained  between    the    circum- 
ferences of  which  r2  and  r3  are  the  radii, 

tan2  (in  —  H)  =  tan2  ie  ̂=^. 

The  equation  of  this  portion  of  the  curve  is,  then, 

(w   «)  J  ffo  COS  E  r~f     .      ,      /-,  COS  8  \  ,575    ,  9  .. 

y?  „/ v  ,3=  —  g? . d 4- ( l   ) QP,- ( —  cos2 x, 6) 
2  pi  I  cos  i.  cos  x  '    \  cos  yJ        v  7 

I  cosx —  cose         .,      [_!]     //    1  -|- cos2 *  tan2 0    \ 

~  sin  x  y/  (cos2  £  —  cos2 '/.)  y    Vcos2  i  —  sin2  i  cot2  yJ  ' 

and   the    expression   of  the    time    is   obtained  from  this  value  of 

((jp — «)  by  interchanging  £  and  k  and  multiplying  by  -~. 

Upon  the  portion  of  the  curve  exterior  to  the  circumference, 

of  which  rx  is  radius,  the  notation 

v  y         l-)-sino   •    J 

gives  for  the  equation  of  the  curve 

(y-«W«8  _     SM    _  2^2  ^  r_  fa- b*\*  ̂ 1 
2  j»f  cos  »  rx  —  .B2         (rx  —  B2)  {rx  -\-  B2) 

B  _  tan[-l]   2^v/(?-1+r-1cos2ttan» V/^  (±riB2 cos2i  —  (^—B2)2 sin2i)]  u""        ̂   [4  ri  ̂'2  cos2  *  ~ (ri  — •fi2jasin!,t]  ' 

and  for  the  expression  of  the  time 

(^^sec^^+^^^-^S^-f^J^v/ll-fco^aan2^) 
-\-2B2  Tan[-1]  y/(l  +  cos2  i  tan2  d) . 

If  «3  is  negative,  the  notation  may  be  adopted 

rx  —  r3  =  B2  tan2  £e , 

r2  —  r,3  =  B2  cot2  £e  ; 
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which,  combined  with  that  obtained  from  (39727_3i)  by  changing 

rz  into  r2  and  r2  into  r1}  gives  (3987)  for  the  equation  of  the  por- 
tion of  the  curve  contained  between  the  circumferences  of  which 

7\  and  r2  are  the  radii,  while  the  expression  of  the  time  is  derived 

by  the  process  of  (39813).  But  with  the  notation  obtained  from 

(39816)  by  changing  rx  into  r3  and  reversing  the  sign  of  Z?2,  the 
equations  (39819)  and  (39825)  become  the  equation  of  the  curve 

and  the  expression  of  the  time,  upon  the  portion  which  is  con- 
tained within  the  circumference  of  which  r3  is  the  radius. 

The  form  of  the  central  force  which  corresponds   to   the  dis- 
cussion of  this  section  is 

692.     If  m  is  2  in  the  first   class  of  §  690,  the  expression  of 
the  central  force  is 

F=hrS  +  b3r*-\-b,r+b-3, 

and  the  forms  of  the  equation  of  the  curve  are  obtained  from 

those  of  §691  by  changing  r  into  r2,  and  (cp  —  a)  into  2  (cp  —  a). 
But  the  expressions  of  the  time  require,  moreover,  the  substitution 

for  (39026)  of 

p  —  q     K  '  l     ' 
for  (39114)  of 

t  —  %  =  J  (  Aa"s         )  tan[-1]  4^r2  +  g« V    \ai(16aa4 — a^a^f    '  ^[^(lGaa,, —  Oia3)]' 

for  (39223)  of 

(t  —  r)^ai=m^ 
for  (3939)  of 

(*—  r)v/—  a4=£3s.0, 



—  400 

for  (39323)  of 

(<-*)V 1    T     r   11  (^  cos  a  —  ̂) r2  "l~  (^  cos  a  ~ 

-r)r? 

for  (39412)  of 

(t  —  'r)^a3=i%&, 
for  (39425)  of 

(t  —  r)s/  —  a3=i^i6, 

for  (39618)  with  the  form  of  (39623)  of 

{t  —  t)  y/  #4  =  i  cos & SFj  $ , 
for  (3975)  of 

(^  —  t)\/(  —  a4)=  i  cos  a  9^$, 
for  (39724)  of 

^  —  T  =  i^, 

for  (398n)  and  (39825)  of 

(7  —  t)  «3  =  I  COS  « 9^  £ , 
and  for  (3992_6) of - 

r (£  —  t)  y/  —  a3=i  cos a  9^ 3 . 

693.     In  the  special  case  of  §  692,  in  which  F  is  reduced  to  its 

F=h first  term,  so  that 
'i'  ? 

two  of  the  roots  of  (38929)  are  real  and  two  are  imaginary,  so  that 

the  only  portion  of  §  691,  which  is  applicable  to  this  case,  is  from 

(39115)  to  (39323).  In  this  case,  moreover,  one  of  the  real  roots  is 

positive  and  the  other  is  negative  if  #4  is  positive,  so  that  the  curve 

extends  to  infinity ;  but  if  #4  is  negative,  both  of  the  real  roots  must 

be  positive,  so  that  the  circumferences  which  correspond  to  these 

roots  are  the  limits  of  the  curve,  and  S20  is  negative  and  satisfies  the 
condition 
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694.     In   the   special  case  of  §  692,  in  which  F  is  reduced  to 

its  second  term,  so  that 

F=b3r3, 

the  equation  (38929)  has  no  imaginary  roots   of  r2  when 

X"' 

When  b3  is  positive,  there  is  only  one  real  root,  so  that  the 

curve  extends  to  infinity  from  the  circumference,  which  is  defined 

by  this  root.  When  bz  is  negative,  all  the  roots  must  be  real,  and 

the  two  roots,  which  are  positive,  define  the  circumferences  which 
limit  the  extent  of  the  curve. 

695.  If  m  is  f  in  the  first  class  of  §  690,  the  expression  of 
the  central  force  is 

F=  £4  r~i  -j-  b2  r-$  -f  hx  r~*  -\-l  r~\ 

and  the  forms  of  the  equation  of  the  curve  are  obtained  from 

those  of  §691  by  changing  r  into  r*,  and  cp  —  a  into  I  ((p  —  a). 
But  the  formulae  for  the  time  are  more  complicated,  although 

they  are  still  reducible  to  elliptic  integrals.     If,  indeed, 

2 

z  =  r», 

the  expression  for  the  time  assumes  the  form 

i   %_    P   fz2   

696.  In  the  special  case  of  §  695,  in  which  F  is  reduced  to 

its  first  term,  so  that 
F=b. 

  i 

the  conditions  of  the  form  of  the  curve  are  the  same  with  those 

51 
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expressed   in    (40023_3o),   but   instead  of  (4003]),    the  limitation  of 

S20  when  &4  is  negative  is 

697.  In  the  special  case  of  §  695,  in  which  F  is  reduced  to 

its  second  term,  so  that 

F—hr-i, 

the  equation  (38929)  has  no  imaginary  roots  of  \j  r2,  when 

hl<—±p\£2l 

In  the  special  case,  in  which  F  is  reduced  to  its  third  term,  so  that 

F=\r~i, 

the  equation  (38929)  has  no  imaginary  roots,  when 

In  each  of  these  cases,  when  S20  is  negative,  there  is  only 

one  real  positive  root,  so  that  the  curve  extends  to  infinity  from 

the  circumference  which  is  defined  by  this  root.  When  /20  is 

positive  all  the  roots  must  be  real,  and  the  two  roots,  which  are 

positive,  define  the  circumferences,  which  limit  the  extent  of  the 
curve. 

698.  If  m  is  i  in  the  first  class  of  §  690,  the  expression  of  the 
central  force  is 

F=bs  r~i  -\-  b2  r-2  -j-  ̂  r~§  -\-br~s, 

and  the  forms  of  the  equation  of  the  curve  are  obtained  from  those 

of  §  691  by  changing  r  into  \J r  and  (<p  —  a)  into  2  (<p  —  «)•     But  if 2  =  \]r, 
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the  expression  of  the  time  assumes  the  form 

X
9
 
 

~3 

-f-  a2  z2  -\-  ax  z  -\-  a)  ' 

699.  In  the  special  case  of  §  698,  in  which  F  is  reduced  to 

its  first  term,  so  that 

and  in  that,  in  which  it  is  reduced  to  its  third  term,  so  that 

F=\r-§, 

two  of  the  roots  of  (38929)  are  real  for  \J  r,  and  two  are  imaginary, 

so  that  the  only  portion  of  §  691,  which  is  applicable  to  this  case, 

is  from  (39115)  to  (39324).  I*1  this  case,  moreover,  one  of  the  real 

roots  is  positive  and  the  other  is  negative  if  S20  is  negative,  so  that 

the  curve  extends  to  infinity ;  but  if  S20  is  positive,  both  of  the  real 

roots  must  be  positive,  so  that  the  circumferences,  which  correspond 

to  these  roots,  are  the  limits  of  the  curve,  and  in  the  former  of 

these  cases  b3  is  negative  and 

—  *>M?(6I2jJ), 

while  in  the  latter  case  bx  is  negative  and 

700.  In  the  second  class  of  §690,  when  m  is  unity,  the  equa- 

tion (37822)  of  the  curve  assumes  the  form 

([)    d        I    LI   

Jr)J {airi-\-aArz-\-a2r'i-\-alr-\-a)'> 

so  that  it  can  always  be  obtained  from  the  expressions  of  (t  —  t) 

in  §  692,  by  multiplying  either  of  those  expressions  by  4j»;f.  When, 

in  this  class,  the  curve  terminates  in  the  origin,  it  does  not  usually 
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pass  through  the    condensed  coil   of  §  691.     The    formula  for   the 
time  is 

t-%=i   t   
Jr  s/  («4  'f4  +  «3  r3  +  <h ?'2  +  «i r  +  «) 

The  form  of  the  force,  which  corresponds  to  this  case,  is 

701.     In  the  special  case  of  §  700,  in  which  F  is  reduced  to  its 

third  term,  so  that 

F—h 

4  J one  of  the  roots  of  (38929)  is  zero,  and  the  condition  that  all  the 
roots  are  real  is 

When  S20  is  negative,  if  h1  is  positive,  the  curve  extends  to 

infinity,  in  the  space  exterior  to  the  circumference  of  which  the 

positive  root  of  (38929)  is  the  radius ;  •  but  if  bx  is  negative,  the 

curve  extends  from  the  origin  to  infinity,  if  two  of  the  roots  are 

imaginary,  but  if  all  the  roots  are  real,  one  portion  is  exterior  to 

the  circumference  of  which  the  greater  positive  root  is  radius  and 

extends  to  infinity,  while  the  other  portion  is  contained  within 

the  circumference  of  which  the  smaller  positive  root  is  the  radius, 

and  this  portion  passes  through  the  origin.  When  12  0  is  positive,  bx 

is  negative,  and  the  curve  passes  through  the  origin,  and  is  con- 

tained within  the  circumference  of  which  the  positive  root  of 

(38929)  is  the  radius.  This  case  of  force  has  been  analyzed  by 

Stader. 

702.     In  the  special  case  of  §  700,  in  which  F  is  reduced  to 

its  last  term,  so  that 

F=K. 
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all  the  roots  of  (38929)  are  imaginary  when  S20  and  b  are  both 

positive.  When  I20  is  positive,  therefore,  b  must  be  negative  and 

the  curve  is  contained  within  the  circumference  of  which  the  pos- 

itive root  of  (38929)  is  the  radius.  When  I20  is  negative,  if  b  is 

positive  the  curve  extends  to  infinity  in  the  space  exterior  to  the 

circumference  of  which  the  positive  root  is  radius ;  but  if  b  is 

negative,  the  curve  consists  of  two  portions,  one  of  which  extends 

to  infinity  in  the  space  exterior  to  the  circumference  of  which  the 

greater  real  root  is  radius,  while  the  other  portion  passes  through 

the  origin  and  is  contained  within  the  circumference  of  which  the 

smaller  root  is  radius ;  or  it  extends  from  the  origin  to  infinity. 

703.     When  m  is  2  in  the  second  class  of  §  690,  the  form  of 
the  force  is 

F=  b±r  -j- b2r~3 -\-  b^'-^ -\-  br~7 , 

and  the  equation  of  the  curve  can  be  obtained  in  each  case  from 

that  of  §692,  by  multiplying  {t  —  r)  by  2p\,  and  changing  t  —  % 

into  (p  —  a,  and  r  into  r2. 
If 

.  the  formula  for  the  time  is 

Jz  v  ["■ 4  z4  -f-  a3  £  -\-  a2  z2  -\-  ax  z  -\-  a]  ' 

704.     In  the  special  case  of 

r' ' 

there  are  two  imaginary  roots  of  r2  when 

b^        64p\2' 

When  S20  is  negative,  if  b  is  positive  the    curve    extends   to 
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infinity  in  the  space  exterior  to  the  circumference  of  which  the 

real  root  of  (38929)  is  the  radius;  but  if  b  is  negative,  and  if  all 

the  roots  of  (38929)  are  also  real  and  two  of  them  positive,  the 

curve  consists  of  two  portions,  one  of  which  extends  to  infinity  in 

the  space  exterior  to  the  circumference  of  which  the  greater  posi- 

tive root  is  radius,  while  the  other  portion  passes  through  the 

origin  and  is  contained  within  the  circumference  of  which  the 

smaller  positive  root  is  radius ;  but  if  neither  of  the  roots  is  positive 

when  b  and  I20  are  both  negative,  the  curve  consists  of  a  single 

portion  which  extends  from  the  origin  to  infinity.  When  S20  is 

positive,  b  must  be  negative  and  the  curve  consists  of  a  single 

portion  which  passes  through  the  origin  and  is  contained  within 

the  circumference  of  which  the  positive  root  is  radius.  This  law 

of  force  has  been  analyzed  by  Stader. 

705.  Another  class  of  central  force,  in  which  the  integration 

can  be  performed  by  elliptic  integrals,  corresponds  to  the  form  of 

the  potential 

q   birim-\-bsr3m'-\-b2r3m-{-b1rm-\-b 
~  r2  (r'»  +  hf  ~' 

in  which  m  may  be  either  1  or  2.     If,  in  these  forms 

z  =  rm, 

Z2  =  di  s4  -|-  as  z3  -j-  a2  s2  -J-  %  z  -\-  a 

=  (2  b, rim  -{-2b3 rSm  -\-2b2 r*m  -f-  2  bxr -f  2  b) 

—  (2£20r*  +  4:Pt)(r™+hY, 

the  equation  of  the  curve  assumes  the  form 

and  the  expression  of  the  time  is 
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706.  The  following  graphic  construction  gives  an  easy  geo- 

metrical process  for  tracing  the  various  cases  of  limitation  of  the 

extent  of  the  path  described  under  the  action  of  a  central  force, 

and  especially  for  finding  by  inspection  the  effect  of  the  values 

of  S20  and  jh  upon  the  limits  of  the  curve.     If 

  
l 

r'2' 

construct  the  curve  of  which  the  equation  is 

y=a which  may  be  called  the  potential  curve,  draw  the  straight  line  of 

which  the  equation  is 

y=2p\x+£2,} 

and  the  points  of  intersection  of  the  straight  line  with  the  potential 

curve  give  the  values  of  x  for  the  limits  of  the  path  of  the  body. 

The  path  corresponds  to  those  portions  of  the  potential  curve 

which  lie  upon  that  side  of  the  straight  line,  which  is  positive  with 

respect  to  the  direction  of  the  axis  of  y. 

707.  A  term  of  £2  may  be  omitted  in  the  preceding  construc- 

tion which  is  inversely  proportional  to  the  square  of  the  radius 

vector,  and  its  negative  may  be  combined  with  that  term  of  the 

equation  of  the  straight  line  which  determines  its  direction.  The 

omitted  term  corresponds  to  a  term  of  the  force  which  is  inversely 

proportional  to  the  cube  of  the  radius  vector,  and  which  may  be 

represented  by  (38317)  ;  and  the  corresponding  equation  of  the 

straight  line  is 

y=(2rf  +  *)*  +  fi0. 

708.  It  is  evident  from  the  preceding  construction,  that  if  the 

potential  curve  has  no  point  of  contrary  flexure,  and  if  its  convexity  is  turned 
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in  the  direction  of  the  positive  axis  of  y,  the  path  of  the  bod//  can  only 

consist  of  a  single  portion  which  may  have  either  an  outer  or  an  inner  limit, 

or  it  may  have  neither  or  both.     This  case  includes  all  forces  of  the  form 

F=b1r™  +  b?, 

in  which  bx  and  m  -\-  3  have  the  same  sign. 

But  if  the  potential  curve  has  no  point  of  contrary  flexure,  and  if  its 

convexity  is  turned  in  the  direction  of  the  negative  axis  of  y,  the  path  of 

the  body  may  consist  of  a  single  portion  ivhich  has  either  an  outer  or  an 

inner  limit,  or  it  may  have  neither,  or  it  may  consist  of  two  separate  por- 

tions of  ivhich  one  has  only  an  outer  and  the  other  only  an  inner  limit.  This 

case  includes  all  forces  of  the  form  (4085),  in  which  bx  and  m  -\-  3 
have  different  signs. 

709.  Those  portions  of  the  potential  curve,  in  which  y  and  x 

simultaneously  increase,  correspond  to  the  distances  from  the  centre 

of  action,  at  which  the  force  is  attractive,  so  that  the  convexity  of 

the  path  of  the  body  is  turned  away  from  the  origin.  The  portions 

of  the  potential  curve,  in  which  y  decreases  with  the  increase  of  x, 

correspond  to  the  distances  from  the  centre  of  action,  at  which  the 

force  is  repulsive,  so  that  the  convexity  of  the  path  of  the  body  is 

turned  towards  the  origin.  Any  point,  therefore,  at  which  the 

potential  curve  is  parallel  to  the  axis  of  x,  and  the  ordinate  is  either 

a  maximum  or  a  minimum,  corresponds  to  a  distance  from  the 

origin,  at  which  the  central  force  changes  from  attraction  to  repul- 

sion, and  the  path  of  the  body  has  a  point  of  contrary  flexure. 

710.  If  for  an  infinitesimal  value  of  r  denoted  by  i,  12  assumes 
the  form 

£2  =  kin, 

the  path  of  the  body  cannot  pass  through  the  origin  if  n-\-2  is 

positive  or  if  k  is  negative,  except  in  the  former  case,  when  p1  van- 
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ishes  and  n  is  positive  while  S20  is  negative,  or  n  is  negative  while 

Jc  is  positive ;  but  if  Jc  is  positive  and  n-\-2  negative,  the  external 

portion  of  the  path  passes  through  the  origin,  and  after  passing 

through  the  origin,  the  continuity  of  curvature  is  destroyed  and  the 

path  becomes  a  straight  line. 

711.  If  for  an  infinite  value  of  r,  denoted  by  the  reciprocal 

of  i,  Si  assumes  the  form  (40828),  the  path  of  the  body  cannot  extend 

to  infinity  when  n  and  Jc  are  both  negative,  or  when  n  and  12  0  are 

both  positive,  or  when  n  vanishes  and 

but  the  external  portion  of  the  path  extends  to  infinity  when  n  is 

negative  and  Jc  positive,  or  when  n  is  positive  and  X20  negative,  or 
when  11  vanishes  and 

J20<*. 

712.  If  a  line  is  drawn  parallel  to  the  axis  of  x  at  the  dis- 

tance I20  from  this  axis,  and  assumed  as  a  new  axis  of  x1}  and  if 

yx  and  y%  are  the  corresponding  ordinates,  respectively,  of  the 

straight  line  (407u)  and  of  the  potential  curve,  the  value  of  the 

angle,  which  the  path  of  the  body  makes  with  the  radius  vector, 

is  given  by  the  equation 

which  admits  of  simple  geometrical  construction.  If  z2  denotes  the 

subtangent  of  the  potential  curve  upon  the  axis  of  x1}  the  projection 

of  the  radius  of  curvature  of  the  path  of  the  body  upon  its  radius 
vector  is 

pan  :  =  -£!, 

which  is  constructed  without  difficulty.  By  the  combination  of 

these  two  constructions,  the  path  of  the  body  may  be  obtained  with 

sufficient  exactness  for  most  purposes  of  general  discussion. 

52 
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713.     When  the    origin  is   infinitely  remote  from   the   body, 

the  forces  of  §  676  are  parallel,  and  the  plane  of  motion  is  parallel  to  the 

direction  of  action,  and  the  equation  (3785)  gives,  if  the  axis  of  z  is 

supposed  to  have  the  same  direction  with  the  force, 

-2  cot* ^*, 

of  which  the  integral  is 

0        sin2f 

in  which  a  is  an  arbitrary  constant,  which  is  always  positive,  and 

this  is  the  equation  of  the  'path  of  the  body  referred  to  the  same  coordi- 
nates with  those  of  §  571. 

714.     In   the  case  of  a  constant  force,   the   preceding   equation 
assumes  the  forms 

g(*— *o)  =  m 
a 

sin2_ 

2a 

^         g  sin3 1 ' 

so  that,  in  this  case,  the  path  is  a  parabola. 

715.     The  velocity  in  the  direction  of  the  axis  of  x  is 

v  sin z  =  sin  s  ̂  ( 2  £2  —  2 120)  =  y/  ( 2  a) , 

so  that  this  velocity  is  constant,  and 

x  —  x0  =  y/(2a)  [t  —  t). 

nates,  is 
The  equation  of  the  curve,  expressed  in   rectangular   coordi- 

v-t 
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716.  If  a  potential  curve  is  constructed  by  the  equation 

(407iO)>  m  which  y  may  be  changed  into  x,  and  S2  retained  as  a 

function  of  z,  the  limits  of  the  path  of  the  body  are  defined  by 

the  intersection  of  the  potential  curve  with  a  line  drawn  parallel 

to  the  axis  of  z  at  the  distance  (S20-\-  a)  from  this  axis.  The  por- 
tions of  the  potential  curve  which  correspond  to  the  path,  lie  in 

a  positive  direction  from  the  intersecting  line. 

717.  If  the  force  of  §  713  has  the  form 

F=b1z-\-b, 

the  equation  of  the  path  is 

bxz  +  b  =  s/  (b*  +  2  h S20  +  2  hx a)  sin  [(x0-  x) y/ (- ̂)] 

=  ̂ (P  +  2b1S20+2b1a)Cos[(x-x0)sJ^] 

=  v/_ (P  4.  lx S20  +  2  h a)  Sin  [(*0- x)  y/^] . 

718.  If  the  force  of  §  713  has  such  a  form  that 

O      \z-\-b 

llo  —  j^ky, 

the  notation 

b1  =  2(k1  +  h)(£20-{-a), 
5  =  (F4-^)(i20  +  a), 

gives,  for  the  equation  of  the  path, 

h—z      _    •     (x0  -  x)  y/  (.Q„+  a)  —  y/  (P  -f-  2  h  z  —  z*) 

y/ {&  +  %)  —  £1  +  A 

which  is  easily  transformed  into  the  forms,  which  are  appropriate 

when  the  radicals  become  imaginary. 

719.  In  the  case  of  a  surface  of  revolution,  and  a  force  which  is 
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directed  to  a  point  upon  the  axis  of  revolution,  the    notation   of  ̂   576 

gives —  ==w  sin?  =  u2DsZ, 

A=uv  sin ?  =  u2 Bt  ", 

so   that   the   elementary   area   described  by  the  projection   of  the  radius 

vector  upon  the  plane  of  x  y  is  constant. 

720.     The  notation  of  §  578  gives 

T)    „_t/2»2(-Q-^)[r2+(2V)2] XV  —  y-      2v?(SZ  —  £„)—  A2        > 

n  *  —  AJ.     r'+(^r)a ?  *        m  V  2  «  (fl  —  .Q0)  — ^t2' 

and,  in  the  case  of  parallel  forces 

Dzs  =  BzasJ 2  u2  (fl  —  .Q0) 

2ic2(tt  —  tt0)—A2> AD,  a 

^\2u2(P.  —  Sl0)—A2Y 

721.  Upon  the  surface  of  revolution  which  is  defined  by  the 

equation uv  =  B, 

the  path  of  the  body  makes  a  constant  angle  ivith  the  meridian  curve.  In 
the  case  of B  =  A, 

the  path  is  perpendicular  to  the  meridian,  and  is  a  circle  of  ivhich  the 

plane  is  horizontal. 

Whatever  is  the  value  of  B,  for  the  point  at  which  v  vanishes  u 

is  infinite,  while  v  is  infinite  when  u  vanishes.. 

Upon  any  other  surface  of  revolution  about  the  same  axis,  the  in- 

clination  of  the  path   of  the  body  to   the   meridian  arc  is  the   same  ivith 
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the  corresponding  inclination   upon  the   surface  of  equation  (41221)  at  the 

common  circle  of  intersection  of  these  two  surfaces.     Hence   the    limits  of 

■  the  path  upon  the  given  surface  of  revolution  are  its  intersections  with  the 
surface  of  equation 

n  v=.A, 

and  the  path  extends  over  that  portion  of  the  given  surface,  which  is  ex- 
terior to  this  surface  hy  which  the  limits  are  defined. 

722.  In  the  case  of  a  heavy  body  the  equation  (4122i)  be- 
comes 

M2  2  =r  —  . 

2  9 

723.  In  the  case  of  a  heavy  body  upon  a  vertical  right  cone,  if 

the  body  moves  upon  the  inverted  part  of  the  cone,  the  path  has  an 

upper  and  a  lower  limit ;  but  if  it  moves  upon  the  part,  which  is  below 

the  vertex,  the  path  has  an  upper  limit  from  which  it  extends  doivmvards 

to  infinity.  In  this  case,  if  the  notation  of  (34113)  and  (34116)  is 

adopted,  if  two  of  the  roots  of  the  equation 

A2 

r2  (r  — 
 
r0)

  
= 
 

x — —2  
 

, 

are  imaginary,  which  corresponds  to 

(-fro)3<-TT  " g  sin2  a  cos  a ' 

if  h  is  the  modulus  and  (i  the  argument  of  one  of  the  imaginary 

roots,  and  if  rx  is  the  real  root,  the  notation 

r1  —  hc^-1  =  B2c2i-/-\ 

r1  —  hc-^-1  =  Bzc-2i^-\ 

r  —  fi==  B2  tan2  \  cp , 
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gives  for  the  equation  of  the  path  upon  the  developed  cone 

  2i?  tnni-n2^(cot'(p  +  cog'0. 
V  (2  rx — 2  B2  cos  2  i)  <J(2r1^2B2  cos  2  i)  > 

and    the   position   of  the   body  at   any  instant   is  denned  by  the 

equation 

B{t  —  %)^{2gcota)  =  {rx  +  B2)  ®i<p  —  2B2$i<p 

-|-2_Z?2tan  £<jp  y/(l  —  sin2«sin2(j)). 

If  all   the   roots  of  (41320)  are  real,  and  denoted  in  the  order  of 

decreasing  magnitude  by  r1}  r2,  and  r3,  and  if 

ri  — r2  =  B2  tan2  (1, 

rx  —  r3  =  B2  cot2  [1 , 
i=2 /?  +  hn, 

r  —  r-i  =  /32  tan2  ( I  n — £<p), 

the  equation  of  the  path  upon  the  lower   portion  of  the  devel- 

oped cone  is 

j   B         n[_u    /^^(l  +  cos'ttan'g,) 
~r[^i(^i  +  ̂2)2cos2z  —  4r2B2]  V  (r^B^cos't—^B33 

and   the   position   of  the   body   at   any  instant  is  denned   by  the 

equation 

(t  —  r)  cos  t  \J  (2^  .cos  a)  =  (^  -4-  BJ  cos2i  &+  y  —  2  B  Sf  y 

-\- (jf-{-B  sin  (p)  y/(l-4-cos2&tan2^). 
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The  equation  of  the  path  of  the  body  upon  the  upper  portion 

of  the  cone  is  determined  by  the  combination  of  the  equations 

(41413_16)  with 

rx  —  r  —  Bl Kin  y  sin  i  = 

sin2  a  B\J  (g  cos 

sin  (j)sinj=   j— ̂ r, , 
'  rx  —  r-\-Bz? 

  B_   W_l] 4  / (l+cos'iWqOKrH-^Wi-^lP] 

N/[r1(r1  +  52);Jcos'2i—  4r2JB2]  V  ±rxB*  » 

and   the   position   of  the   body  at   any  instant  is  defined  by  the 

equation 

{t  —  t)  cos  i  y/  (2g  cos  a)  =  —  \j>-\-  B)  cos2/  3^  w 
■  sin  i  sin  qp 

-j-  2 B  § j  93  —  2 2? sin z  cos yt/- 
-j-  sin  »  sin  9 ' 

The  path  of  the  body  upon  the  upper  portion  of  the  cone 

may  be  expressed  in  a  somewhat  more  simple  form  by  the  equations 

snre  = 

r  =  r2  sin2  (p  -j-  r3  cos2  9 , 

sin«V(2ycos«)(^-^0  =  r-^^^(r^^), 

and  the  corresponding  formula  for  the  position  of  the  body  at  any 
instant  is 

In  the  special  case,  in  which  the  roots  r2  and  r3  are  equal, 

the  path  upon  the  upper  portion  is  a  horizontal  circle,  and  the 

equation  of  the  path  upon  the  lower  portion  is 

(^_^0)  =  ta^-Y'(-^-^)-v/3.tant-y(-l-^)i 
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while  the  position  of  the  point  at  any  instant  is  defined  by  the 

equation 

v/(2^cosa)(^-^)  =  2V/(r  +  ir0)  +  |-V/(-r0)tan[-y(-i-^). 

724.  In  the  case  of  a  heavy  body*  upon  the  surface  of  a  vertical 
paraboloid  of  revolution,  of  which  the  axis  is  directed  downwards,  the 

path  has  an  upper  limit,  from  which  it  proceeds  doivnivards  to  infinity. 

If  (33625)  is  the  equation  of  the  paraboloid,  and  if  zx  and  — q  are 
the  roots  of  the  equation 

%pgz(z  —  s0)=42, 

the  path  of  the  body  when 

is  defined  by  the  equations 

z  —  zx  =  {zx  -\-p)  tan2  cp , 

q  — p  =  [q  -j-  zx)  sin2  i, 

and  the  position  of  the  body  at  any  instant  is  given  by  the  equation 

%  cos  i(t  —  t)\J  J_  =cos2i(3^i(p  —  &i<p-\-  y/(cos2/tan2cp  -|-  sin2  /sin2  y). 

But  when 

the  path  is  defined  by  the  equations 

z  —  zx  =  {zx+p)  cot2  y, 

p  —  q  =  (zx  -\-p)  sin2  i, 
«—  A  qp  (   P_   w) 



—  417  — 

and  the  position  of  the  body  at  any  instant  is  given  by  the  equation 

{t  —  r)s/\_hg  (si  -\-p)]  =  %  (p  —  &i  ̂ —  si  (cot2  (p  —  sin2 1  cos2  y). 

In  the  especial  case  of 

p  —  q, 

the  path  of  the  body  is  the  parabola,  which  is  formed  by  the  inter- 

section of  the  paraboloid  with  the  vertical  plane,  of  which  the 

equation  is 

u  cos  %  =\J  (4:/ -\-ul), 

and  the  position  of  the  body  at  any  instant  is  defined  by  the 

equation 

(t  —  r)  \J(pg)  _,       u 

V'(8^  +  2«iS)  —  tan- 
725.  In  the  ease  of  a  heavy  body  upon  the  surface  of  a  vertical 

paraboloid,  of  which  the  axis  is  directed  upward,  the  path  has  an  upper 

and  a  lower  limit.  If  p  is  negative,  (33625)  is  the  equation  of  this 

paraboloid,  and  if  — sx  and  — .«2  are  the  roots  of  the  equation 

(416^),  they  correspond  to  the  limits  of  the  path.  The  path  of 

the  body  is  defined  by  the  formulae 

z  =  —  zx  cos2  (f  —  s2  sin2  (p , 

(■?2  — p)  sin2  i  =  2'2  —  Zi , 

and  the  time  is  given  by  the  equation 

,_,  =  v/!(i^)grj(f. 
53 
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THE     SPHERICAL     PENDULUM. 

726.  When  the  surface  upon  which  the  body  moves  is  that 

of  a  sphere,  the  problem  becomes  that  of  the  spherical  pendulum.  In 

this  case,  the  path  has  an  upper  and  a  lower  limit.  If  the  centre 

of  the  sphere  is  the  origin,  if  R  is  the  radius  of  the  sphere,  the 

limits  of  the  path  correspond  to  the  roots  of  the  equation 

2g{R*  —  z2){z  —  z,)—j?=0. 

If  the  roots  of  this  equation  are  z1}  s2,  and  — p,  and  if  the  nota- 
tion is  adopted 

z  =  zx  cos2  (p  -4-  z2  sm2  9  ■> 

(p-\-z1)sm*i=z1  —  z2, 

the  path  is  defined  by  the  formula 

and  the  time  by  the  formula 

727.  From  the  equation  (41810),  it  is  easily  inferred  that 

zxz2  -\-R2  =  p{zl-\-Z2), 
ZQ  =  Zx  -J-  Z2        p , 

that  the  sum  of  zJ  and  z2  is  always  positive,  and  that  p  exceeds  R. 

728.  It  is  apparent  from  the  inspection  of  (41821)  that,  if  the 

mutual  ratios  of  R^  and  the  roots  of  (41810)  are  unchanged,   the 
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time  of  oscillation  of  the  pendulum   is  proportional  to  the  square  root  of 

its  length. 

729.  If  the  length  of  the  pendulum  and  the  sum  of  zx  and  p 

are  given,  it  is  evident  from  (41821)  that  the  time  of  oscillation 

increases  with  the  increase  of  i,  and  is  a  minimum  when  i  van- 
ishes, that  is,  when 

in  which  case  the   path  of  the   pendulum   is   a   horizontal   circle. 
The  time  of  oscillation  in  this  case  is 

„r  2  n  R 

\/[^0>  +  *i)]' 
The  mutual  relation  of  p  and  zly  which  is  here  given  by  the  equa- 

tion (41826),  is 

whence 

This  value  is  a  minimum,  when 

z1  \J  3  =  R, 
in  which  case 

2R  ___     /2zx 

9 *=«v/#=V- 
which  is,  therefore,  the  greatest  time  of  vibration  when  the  path  of 

the  pendulum  is  a  horizontal  circle. 

It  is  easy  to  see  that  i  cannot  vanish  for  all  values  of  the 

sum  of  p  and  s1}  but  that  its  least  value  is  determined  by  the 

equation 

sin2  2  i  =  4  —  -. — , — v,, 
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whenever 

It  is  also  evident  that  the  least  value  of  the  sum  of  p  and  % 

which  corresponds  to  any  assumed  value  of  i  is  given  by  (4I930), 

so  that  for  any  value  of  i,  the  greatest  time  of  vibration  is 

2WIV/C-±T^)9,'<*»>= 
which  increases  with  i,  and  is  infinite  ivhen  i  becomes  a  right  angle. 

When  i  is  an  octant,  the  value  of  p  -4-  z\  in  (41930)  is  a  maxi- 

mum, and  the  corresponding  values  of  p  -)-  zx  and  T  are 

p  -f  -0j  =  2  R 

^=v/f^(*»)- 
730.     In  the  discussion  of  the  form  of  the  path  of  the  pendu- 

lum, it  is  convenient  to  adopt  the  notation 

In  the  case  of  (4197),  the  equations  of  §726  and  727  give 

f-  =  2  z,  (/  —  &)  =  {*~A)\ 

JT  2nTt 
"'—)/<?*  +  &)'    '- 

When  2j  vanishes 
#=2tt, 

7T 
 " and   T  is  the  time  of  a  complete  revolution.     When 

v«  =  *> 
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and  T  is   the    time    of  a   semi-revolution.     The   time  of  a  complete 

revolution,  when  the  pendulum  moves  in  a  horizontal  circle  is 

Tj=2n V 

~2 

so  that  it  is  proportional  to  the    square  root  of  the  distance  of  the  plane 

of  revolution  from  the  centre  of  the  sphere. 

731.      When   the  path   of  the  pendulum   deviates    slightly  from    a 

horizontal  circle,  so  that  i  is  very  small,  the  notation 

j?a  -j-  S2  =  2  £g  =  2  R  cos  <53, 

gives 

*i  —  H  =  (j»  +  s's)  i"  =  — f-r-^  i2> 

2z„ 

2z3     ' 

+       lt~  -I-   d   Zg    .9  n — -j   f  cosz  (p, 

732.  When  the  path  of  the  pendulum  deviates  slightly  from 

a  great  circle,  so  that  the  sum  of  s1  and  g2  is  small,  p  is  large  and  i 

is  small,  the  formulae  become,  by  neglecting  the  fourth  and  higher 

powers  of  i 

A2
 

(^-^[^-(^-^(I-^), 

z  =  i  (*,  -  z2)  cos  2  y  +  -4l^y *-'  *2, 
f  7.  =  2  7T  ; 



—  422  — 

so    that   the   vibration   corresponds  to  a  complete   revolution   of  the  pen- 
dulum. 

733.  When  the  pendulum  passes  very  near  the  lower  point 

of  the  sphere,  so  that  %  differs  but  little  from  R,  the  neglect  of 

this  difference  and  its  higher  powers  gives 

22  =  R  cos  2  i, 

p=R-\-tan2i(R  —  g1), 

^-k=4:R2(R  —  Sl)sm2i, 

z  =  R  —  2  R  sin2  i  sin2  cp  —  [R  —  sx)  cos2  c/> , 

«r.=»  +  [««o<».(*»)4-'*Ssr«,^»)]v/(2:T^)j 
so  that  the   vibration   corresponds  to  a  little   more   than  a  semi-? •evolution 

of  the  pendulum. 

734.  In  the  general  case  the  vibration  of  the  pendulum  corresponds 

to  an  arc  of  revolution  which  exceeds  a  semi-revolution,  but  is  less  than 

an  entire  revolution.  When  the  velocity  at  the  highest  point  is  quite 

small,  the  case  of  §  733  occurs,  hut  the  arc  of  revolution,  which  cor- 

responds to  a  vibration,  increases  with  the  increase  of  velocity  at 

the  highest  point.  When  the  highest  point  is  below  the  level  of 

the  centre  of  the  sphere,  the  case  of  §  731  gives  the  highest  limit 

of  the  velocity  at  this  point ;  but  when  the  highest  point  is  upon 

or  above  the  level  of  the  centre,  the  greatest  velocity  extends  to 

infinity,  which  limit  corresponds  to  the  case  of  §  732. 

735.  The  azimuth  of  the  pendulum  at  any  instant,  is  derived 

from  the  equation  of  §726  in. a  form  suitable  for  computation  by 

means  of  the  following  formulae  ; 

z  =  Rcos  6, 

r,  R  (COS  #,  COS  do  -\-  1 ) 

p=Bseca=—± — -1  ,      2l    ' 1  COS  0l  -f-  COS  C72 
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A1         m,      »      /  ,,  .  N         i?5  sin3  ft  sin'-' ft, —  =MS  tan-  «  (cos  d,  4-  cos  tU  =     —a  - 
"2g  v  '  - '  cos  dy  -\-  cos  ft 

9  .         1-1-  cos  «  cos  ft, 
COS-  2  =  =-J   t--  , 

1  -j-  COS  «  COS  /7j 

sin  -^  ̂i 

Sm^  =  sin-I^' 

cos  i  ft., 

tan^^1+?0S,?
lC0sf sin  #2  cos  ft 

cos  ft  -)-  cos  ft. tan  ̂ x  =  cos  a  cos  d2  tan  fi  = 
sin  (?! 

cos  ,u  =  cos  ̂ 2  cos  ̂  , 

co  &  =  h  Ti  —  i, 

n  \/  (cot2  cr  —  sin2  i  cos2  ai) 
tan  /.!  =  s-v   *   .    ,    *' , cos  i  cos  jwx  sin  ft, 

,  sin  //  tan  ft,  tan  i  ft,  tan  P. 

tan  l2  =  — £— — -- — 2—   , tan  ftl  cos  fix 

,        ,       tan  2. 

3        tan2//(l  +  cos2  i  tan2  9) ' 

,        ,  tan2  i  cos2  9  cos  ft2  tan  ju  tan  |  6i  tan  X 
tan  A4       j — jz   - — .    „  . — r-5 — , 

COS  [A  COS  7]  COS  //j  -(-  (1    COS  fl  COS  7]  COS  ?/,)  Sill"  I  Sill"  (f 

TT         cos  i  sin  u  tan  ft  r.Tf)   /       cos2  i  cos2  u  tan2  ft,      \         ~      1 

^  =  "  Ian ir     L  ®*  (   ta^   >  V  ~  ̂  9»J 

-J-  cos  i  cos  ̂   tan  <32  ̂   9  -|-  ̂-1  —  ̂2  -f~  ̂3  —  ̂ t> 

and  the  arc  of  revolution  for  the  complete  vibration  is 

**£=«+  [#<(**)_*<  (i  TT)]  ̂ co^_^(i  *)  gcQiu 

-J-  cos  i  cos  (it  tan  $2  9*,-  (i  tt)  ■ 

These  formulae  do  not  appear  to  differ  from  those  of  Guder- 

mann,  although  the  reduction  is  more  extended.  They  give  with 

equal  facility  the  area  of  spherical  surface  which  is  described  by  the 

arc  of  a  great  circle,  which  joins  the  extremity  of  the  pendulum  to 

the  lower  point  of  the  sphere. 
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MOTION    OP   A    FREE   POINT. 

736.  When  a  material  point  is  unconstrained  by  any  condi- 

tion, and  is  free  to  obey  the  action  of  any  force  whatever,  its 

motion  in  any  direction  is  simply  denned  by  the  equation 

D*  x  =  Dxtt . 

737.  If  the  coordinates  are  assumed  to  be  of  the  partial  polar 
form  in  which 

z  =  the  distance  from  the  plane  of  xy , 

o  =  the  distance  from  the  axis  of  z, 

(p  =  the  inclination  of  o  to  the  axis  of  x, 

the  value  of  T  (16228)  is,  for  the  unit  of  mass, 

The  corresponding  values  of  to  (1654)  are 

(D  =  Z', «>!  =  </, 

co2  =  o2  <jp' ; 

so  that  cd2  is  the  double  of  the  projection  of  the  instantaneous  area,  which 

is  described  by  the  radius  vector  of  the  point,  upon  the  plane  o/xy. 

The  equation  (1662)  gives,  then, 

It  is  apparent  from  (39]0)  that  the  second  member  of  the  last  equation 
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is  the  moment,   with   reference   to   the  axis  of  z,  of  all  the  forces  zvhich 

act  upon  the  point. 

738.  If  the  forces  are  proportional  to  the  distances  from  the  centres 

from  which  they  emanate,  the  hody  moves  as  if  it  were  under  the  influence 

of  a  single  force,  acting  by  the  same  law  with  an  intensity  equal  to  the  sum 

of  the  intensities  of  the  given  forces,  and  emanating  from  a  centre  zvhich  is  the 

centre  of  gravity  of  the  given  centres  regarded  as  masses  proportional  to  the 

intensities  of  their  action.  For,  if  the  notation  employed  in  §  128  is 

adopted,  and  if  m  denotes  the  sum  of  the  intensities  of  action,  the 

value  of  the  potential  is 

a 
=  i  mr2-\-  I    o2  =  £  m  r2  -\-  K, 

in  which  Zisa  constant  and  can  be  absorbed  into  the  constant  H 

with  which  S2  is  connected  in  the  equations  of  motion. 

It  follows  from  §  685,  that  the  path  of  the  body  is,  in  this  case, 

a  conic  section,  of  zvhich  the  centre  of  gravity  is  the  centre. 

739.  If  all  the  forces  are  directed  towards  a  fixed  line,  the  area 

described  by  the  projection  of  the  radius  vector  upon  a  plane  perpendic- 

ular  to  the  fixed  line  is  proportional  to  the  time  of  description.  For  the 

instantaneous  area  is  in  this  case  constant  by  the  equation  (42429),  in 

which  the  fixed  line  may  be  assumed  for  the  axis  of  z,  so  that  the 
second  member  shall  vanish. 

740.  In  the  example  of  the  preceding  section,  a  peculiar  sys- 

tem of  coordinates  may  be  advantageously  adopted.  This  system 

consists  of  the  sum  of  the  distances  from  two  fixed  points  of  the 

given  line,  the  difference  of  these  distances,  and  the  angle  which 

is  made  by  a  plane  passing  through  a  fixed  line,  with  a  fixed  plane 

which  includes  this  line.     If,  then, 

2p  =  the  sum  of  the  distances  of  the  body  from  the  two  fixed 

points, 
54 
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2  q  —  the  difference  of  these  distances, 

(p  =  the  angle  which  the  plane  including  the  body  and  the 

fixed  line  makes  with  the  fixed  plane, 

2  a  =  the  distance  of  the  fixed  points  from  each  other, 

2  y  =  the  angle  which  the  two  lines,  which  are  drawn  from 

the  body  to  the  fixed  points,  make  with  each  other, 

k  =  the  perpendicular  drawn  from  the  body  to  the  fixed  lines, 

pl=p2 — a2, 

the  values  of  /c,y,  and  T  are 

a   ' 

tan  w  —  — , 

T       Px 

,2  ,2 

2cos2ii;    '    2sm2ip    '  '  yj-       '    ■LJ\pi    '    q{/     '        2  a2 

The    corresponding    differential    equations   derived   from    Le- 

grange's  canonical  forms  (16412)  are 

d,  a  =  (i  +$?-,  |-?-#+  i-^"'"'+" 
 '** 

m 

2qlpp'q'-\-qp\q 

9l 

The  integral  of  (42620)  is 
k2(p1  =  B, 

in  which  B  is  arbitrary,  and  this  equation  expresses  the  proposition 

of  §  739,  and  gives 

9  —  &2~M' 
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A   second   integral   of  these   equations,   corresponding  to  the 

principle  of  living  forces,  is 

The  sum  of  the  equations  obtained  by  multiplying  (42622)  by 

p\pr,  (426.*)  by  (—fig)  and  (42T3)  by  2  (pp'  +  qq')  is 

*  A  [(P2  -  <?)  (/-  /)]  -  Dt  [(/  +  f  -  «2)  {£2  +  //)] 

—  (fp'DpS2-{-p*q'l)q£2). 

This  equation  is  integrable,  whenever  12  satisfies  the  condition 

2qDpn  —  2pD(1I2=(f  —  f)I)lq£2, 

which,  by  the  substitution  of 

_     l        l 

p-\-q>  J  —  p  +  q' 

may  be  transformed  into 

If,  then, 

I2j  =  a2  Z>,  12  — /  Dy£2  —  (x—y)  £2 

=  -(^.11—^1)  =  -^-?^ 

the  equation  (427i7)  or  (427n)  becomes 

0-^^^-fF2^^—  (tf-fy)^ 

=  -(2>>i2+4^-,)  =  -A[(f?-^)fl]- 
\  P  I       p2     g2/  pi     g2 

If,  then,  P  and  Q  are  arbitrary  functions  of  p  and  ̂   respective- 

ly, the  general  value  of  £2  is 

f — 92 
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and,  if 

P\=2H{pi  —  <)-f-2(P-f  C)(f—  a2)  —  a2B\ 

Ql  =  2R(qi  —  ai)  Jr2(Q—C)  ^  —  f)  —  a*B\ 

in  which  C  is  an  arbitrary  constant,  the  integral  of  (4278)  is 

HP2 -??{/-/)  =  PI- Qh 

while  (4273)  may  be  written  in  the  form 

(/  -  ff  (<fi/+pl  /)  =  &  p\  +A  Ql 

It  is  easy  to  deduce  from  these  equations 

(f-hp'=Px (p*-f)</=Q1, 

J  p  Pi  J  q    Ql 

d  p  -»  1  U  q   V 1 

tp  =  a*B  f-i--fa2j?  fJL. 

This  solution  is  published  by  me  in  Gould's  Astronomical  Journal. 
741.  It  is  evident  from  the  linear  form  of  the  equations 

with  reference  to  £2,  that  all  special  values  of  12  may  be  combined 

into  a  more  general  value  by  addition  or  subtraction. 

742.  The  integrals  in  the  values  (42815_20)  assume  the  elliptic 

form,  when  P  and  Q  have  the  forms 

P  =  A  +  AlP  +  Aif  +  ̂p  +  .p^a, 

Q  =  B0  +  Bll±B2?  +  a-^-  +  £i, 
and  it  is  apparent  that,  in  the  expressions  of  the  integrals,  the  con- 
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stants,  Aq,  A2,  B0  and  B2  can  be  combined  with  II,  C,  and  B.     The 

elliptic  integrals  become  circular,  when 

&=—A2=B2, 

A1  =  B1=0, 

as  well  as  in  other  cases  which  do  not  seem  to  be  of  especial 
interest. 

743.  When  P  and  Q  have  the  forms 

P  =  A,p,     Q  =  B,q, 

the  value  of  the  potential  is 

n-   A  +  A    ■    A-B, 

so  that,  in  this  case,  the  forces  are  equivalent  to  two  emanating  from  the 

fixed  points  with  the  same  law  of  force  as  that  of  gravitation,  which  case 

has  been  integrated  by  Euler,  Lagrange,  and  Jacobi,  and  the  forms 

of  Lagrange's  integrals  are  identical  with  those  of  (4281&_2o)- 
744.  When  P  and  Q  have  the  forms 

P  =  Af,      Q  =  —Aq\ 

the  value  of  the  potential  is 

so  that,  in  this  case,  the  force  is  equivalent  to  a  single  force  emanating 

from  a  point  which  is  midway  between  the  tivo  fixed  points,  and  the  law 

of  force  is  proportional  to  the  distance  from  the  centre  of  force,  and  this 

case  is  integrated  by  Euler  and  Lagrange. 

745.  When  P  and  Q  have  the  form 

n  —  A—     A  Q—A—     A 
pi        jr — -a11      ̂          q{         or — q27 
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the  value  of  the  potential  is 

pi  q'l        a2  h% ' so  that,  in  this  case,  the  force  is  equivalent  to  a  force  which  emanates 

from  an  infinite  axis  of  uniform  extent,  and  is  inversely  proportional  to 

the  cube  of  the  distance  from  the  axis. 

746.  When  the  curve  is  given  upon  which  a  material  point 

moves  freely,  the  law  of  the  fixed  force  is  restricted  within  certain 

limits  which  it  may  be  interesting  to  investigate.  The  geometrical 

conditions  of  the  force  are  simply  that  it  must  be  directed  in  the 

osculating  plane  of  the  curve,  and  the  normal  force  must  be  equal 

to  the  centrifugal  force  of  the  body. 

By  the  adoption  of  the  notation 

ilx  =  S2  -f  H=  T, 

the  equality  of  the  force  in  the  direction  of  the  normal  N,  or  of 

the  radius  of  curvature  q  to  the  centrifugal  force  is  expressed  by 

the  equation  - 
DN£21  =  ̂ . 

747.  Since  the  preceding  equation  is  linear,  all  the  special  values 

of  I2X  by  which  it  is  satisfied,  may  be  combined  into  a  neiv  value  by  ad- 

dition or  subtraction.  Previously  to  this  addition,  each  value  of  S21  may 

be  multiplied  by  a  factor,  which  may  represent  the  mass  of  the  body, 

and  if  the  factor  is  denoted  by  m,  the  value  of  m  X2X  will  correspond 

to  the  whole  force  acting  upon  the  mass,  and  it  is,  then,  evident 

that,  if  M  denotes  the  mass  upon  which  the  combined  forces  act, 

and  V  its  velocity,  the  combined  power  is 

M  V2=Z(mv2), 

which  expresses  a  condition  identical  with  the  theorem  of  Bonnet. 
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748.     If  a  special  value  of  I22  is  represented  by  S20,  and  if  i22 

satisfies  the  equation 

BNn2=o, 

so  that  it  is  the  potential  of  a  force,  to  the  level  surfaces  of  which 

the  given  curve  is  a  perpendicular  trajectory,  the   complete  value  of 

n1  =  n0f(£22), 
£2i  is 

in  which  f  is  an  arbitrary  function.  It  is  apparent,  then,  that  £2X  has 

an  endless  variety  of  possible  forms  in  every  special  case.  But 

each  form  corresponds  to  an  arbitrary  value  of  one  of  the  constants 

of  the  given  curve,  or  of  some  combination  of  those  constants. 

749.     If  the  given  curve  is  the  parabola,  of  which  the  equa- 
tion is 

{l/—//o)2  =  2p  {%  —  %*), 

the  values,  which  correspond  to  the  arbitrary  value  of  x0,  are 

X 

•*2a=.log(y.— ^o)  +  - 

n  =       1 
while  those,  which  correspond  to  the  arbitrary  value  of  y0,  are 

12 

■t+ts/^ 

£20=2(%  —  x())-\-p; 

and  it  is  interesting  to  observe  that  when,  in  this  case,  the  arbitrary 

function  of  S22  is  assumed  to  be  constant,  the  value  of  the  force  is 

independent  of  %0  and  p  as  well  as  of  y0. 

The  values,  which  correspond  to  the  arbitrary  value  of  p,  are 
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750.  If  the  given  curve  is  the  conic  section,  of  which   the 

equation  is 
P 

ecos((p  —  cp0)  =  -  —  1, 

the  values,  which  correspond  to  arbitrary  values  of  <p0  are 

n  —ml*       Ptanr~lir  +  P  1         sjnr-*2i>-(1~~fl *>r 

S20=l-e*-2-f, 
in  which 

E2  =  e2ri  —  (Pr  —  r2f. 

"When  the  arbitrary  function  of  I22  is  assumed  to  be  constant, 
the  force  is  independent  of  e  and  P  as  well  as  of  <jp0,  and  its  law  is 

identical  with  that  of  gravitation. 

751.  If  the  given  curve  is  the  cycloid  determined  by  the 

equations 

^—#0  =  ̂ (1  —  cos  &)> 

x  —  x0  =  E  (&  —  sin  G) ; 

the  values  which  correspond  to  arbitrary  values  of  x0  are 

£22  =  x-\-  E(6  -j-sin£), 
l 

S20  = 

y—yo' in  which  6  is  to  be  regarded  as  the  function  of  y,  which  is  deter- 
mined by  (43218). 

752.  If  the  given  curve  is  a  circle  of  which  the  centre  is  the  ori- 

gin zvhile  the  radius  is  arbitrary,  the  potential  of  the  force  is  an  arbitrary 

homogeneous  function  of  the  reciprocals  of  x  and  y,  which  is  of  the 

second  degree. 
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This  peculiar  result  is  the  more  worthy  of  attention  because 

it  can  be  extended  to  the  sphere,  so  that  the  potential  of  a  force  by 

zvhich  a  body  may  move  upon  a  sphere  of  a  given  centre  but  of  an  ar- 

bitrary radius,  is  likewise  an  arbitrary  homogeneous  function  of  the  second 

degree  of  the  reciprocals  of  the  rectangular  coordinates,  of  which  the  centre 

of  the  sphere  is  the  origin. 

These  problems  are  fruitful  of  new  subjects  of  interesting  geo- 

metric speculation. 

CHAPTER    XII. 

MOTION    OF    ROTATION. 

753.  If  the  coordinates  of  the  points  of  a  system  are  the 

partial  polar  coordinates  of  §  737,  and  if  y0  is  supposed  to  refer  to 

some  point  of  the  system,  that  is,  to  an  axis  connected  with  the 

system,  from  which  the  corresponding  angles  6  are  measured,  so 

that  the  value  of  q>  is 

SP  =  9>o  +  d, 
that  of  T  becomes 

Hence  the  equation  (16412)  gives 

the  second  member  of  which  is  the  derivative  of  double  the  sum  of 

the  products  obtained  by  multiplying  each  element  of  mass  by  the 
55 
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area  described  by  the  projection  of  the  radius  vector  upon  the 

plane  perpendicular  to  the  axis  of  rotation.  If  this  area  is  desig- 

nated as  the  rotation-area  for  the  axis,  it  follows  from  (3923)  that  the 

derivative  of  the  rotation-area  for  the  axis  is  equal  to  the  sum  of  the 

moments  of  the  forces  ivith  reference  to  that  axis.  It  is  obvious  that 

the  mutual  actions  of  the  system  may  be  neglected  in  obtaining 
the  sum  of  the  moments. 

If,  then,  all  the  external  forces  ivhich  act  upon  a  system  are  directed 

towards  an  axis,  the  rotation-area  for  that  axis  will  be  described  with  a  uni- 

form motion,  which  is  the  principle  of  the  Conservation  of  Areas. 

754.  The  rotation-area  for  an  axis  may  be  exhibited  geomet- 

rically by  a  portion  of  the  axis  which  is  taken  proportional  to  the 

area,  and  it  is  evident  from  the  theory  of  projections  that  rotation- 

areas  for  different  axes  may  be  combined  by  the  same  laws  with 

which  forces  applied  to  a  point,  and  rotations  are  combined,  so  that 

there  is  a  corresponding  parallelopiped  of  rotation-areas.  There  is,  then, 

for  every  system  an  axis  of  resultant  rotation-area,  ivith  reference  to  ivhich 

the  rotation  is  a  maximum,  and  the  rotation-area  for  any  other  axis  is  the 

corresponding  projection  of  the  resultant  rotation-area.  The  rotation-area 

vanishes,  therefore,  for  an  axis  ivhich  is  perpendicular  to  the  axis  of 

resultant  rotation-area. 

ROTATION     OF     A     SOLID     BODY. 

755.  In  the  rotation  of  a  solid  body,  the  axis  of  rotation  does 

not  usually  coincide  with  that  of  resultant  or  maximum  rotation- 

area  ;  and  the  relations  of  these  two  axes  is  of  fundamental  impor- 

tance in  the  investigation  of  the  rotation.  The  determination  of 

these  relations  depends  directly  upon  the  moment  of  inertia.  The 

moment  of  inertia  of  a  body  or  system  of  bodies  upon  an  axis  is  the  sum 
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of  the  products  obtained  by  multiplying  each  element  of  mass  by  the  square 

of  its  distance  from  the  axis. 

The  distorting  moment  ivith  reference  to  two  rectangidar  axes  is  the 

sum  of  the  products  obtained  by  multiplying  each  element  of  mass  by  the 

products  of  its  distances  from  the  two  corresponding  coordinate  planes. 
Let  then 

m  =  the  mass  of  the  body, 

Qp  =  the  distance  of  the  element  d  m  from  the  axis  of  p ,  which 

passes  through  the  origin, 

-  Ip=  the  reciprocal  of  the  moment  of  inertia  for  the  axis  of  p, 

m  Jp  =  the  distorting  motion  of  inertia  for  the  two  axes  which  form 

a  rectangular  system  with  the  axis  of  p , 

which  gives 

-*p         *Jm 

If,  then,  cpg  is  the  angle  which  the  axis  of  p  makes  with  the  direc- 

tion of  q,  the  moment  divided  by  the  mass,  becomes 

=^j[[^^2-(^^cos^))2]' 
=  Sx  (pj^  —  2JX  cos  (py  cos  <pz) . 

If  Ip  is  set  off  upon  the  axis  from  the  origin,  its  extremity 

lies  upon  a  finite  surface  of  the  second  degree,  which  is,  therefore, 

an  ellipsoid,  and  may  be  called  the  inverse  ellipsoid  of  inertia.  If  the 

axes  of  this  ellipsoid  are  assumed  for  the  axes  of  coordinates,  the 

values  of  J  must  vanish  for  each  of  these  axes,  that  is,  there  is  no 
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distorting  inertia  for  these  axes  which  may  he  called  the  principal  axes  of 
inertia. 

756.  When  a  body  rotates  about  an  axis,  the  rotation-area 

for  an  axis,  which  is  perpendicular  to  that  of  rotation,  is  obviously 

proportional  to  the  distorting  inertia  for  these  two  axes.  There  is, 

therefore,  no  rotation-area  for  a  principal  axis  of  inertia  proceeding  from 
rotation  about  either  of  the  other  tivo  axes  of  inertia. 

757.  If  Qp  is  the  velocity  of  rotation  about  the  axis  of  p,  the 

corresponding  velocity  of  rotation  about  the  principal  axis  of  x  is 

&f=ffpcoa<pxf 

and  the  corresponding  rotation-area  is 
m  dp  cos  cpx 

B ) 

the  cosines  of  the  angles,  which  the  axis  of  resultant  rotation-area 

makes  with  the  principal  axes,  are  then  proportional  to 

cosg^       cos  cpv  ,    cos  go and 

so  that  this  axis  coincides  with  the  perpendicular  to  the  tangent 

plane  of  the  ellipsoid  which  is  drawn  at  the  extremity  of  the  axis 

of  rotation.  The  plane  of  maximum  rotation-area  is,  therefore,  conjugate 

to  the  diameter  of  the  ellipsoid  ivhich  is  the  axis  of  rotation,  which  theorem 

is  given  by  Poinsot. 

758.  If  the  reciprocal  of  the  perpendicular  let  fall  from 

the  origin  upon  the  tangent  plane  of  the  ellipsoid  is  set  off  upon 

the  perpendicular,  its  extremity  lies  upon  a  second  ellipsoid,  which 

may  be  called  the  ellipsoid  of  inertia,  and  of  which  the  principal  axes 

are  the  reciprocals  of  the  principal  axes  of  the  ellipsoid  of  §  755,  and  are 

proportional  to  the  square  root  of  the  principal  moments  of  inertia. 

759.  It  is  apparent  that  the  tangent  plane  to  the  ellipsoid  of  inertia 
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which  is  draivn  at  the  extremity  of  the  axis  of  maximum  rotation-area  is 

perpendicular  to  the  axis  of  rotation. 

It  is  also  evident,  that  the  axis  of  rotation  is  one  of  the  principal 

axes  of  the  section  of  the  inverse  ellipsoid  of  inertia,  which  is  made  by  a 

plane  passing  through  the  axis  of  inertia  and  perpendicular  to  the  common 

plane  of  the  axis  of  rotation  and  of  maximum  rotation-area,  while  the  latter 

axis  is  one  of  the  principal  axes  of  the  section  of  the  ellipsoid  of  inertia, 

which  is  made  by  a  passing  plane  through  this  axis  perpendicidar  to  this 

same  common  plane. 

760.  Although  the  fixed  axes  of  coordinates  may  be  assumed 

at  any  instant  to  coincide  with  the  principal  axes  of  inertia,  the  axes 

of  inertia  are  nevertheless  in  constant  motion  from  the  fixed  axes, 

and  at  the  end  of  the  instant  dt,  after  coincidence,  the  axes  of  rota- 

tion, which  coincided  at  the  beginning  of  the  instant  with  the  fixed 

axes  of  y  and  z,  will  not  remain  perpendicular  to  the  fixed  axis 

of  x,  but  will  deviate  from  perpendicularity  by  the  respective  angles 

frzdt  and  — &'v  dt. 

The  rate  of  increase  of  the  rotation-area  for  the  fixed  axis  of  x, 

which  arises  from  the  external  forces  is,  therefore, 

mB°*n  —jf  —  V*  6*  \E~~W 

which  represents  the  well-known  equations  given  by  Euler  for  the  rota- 

tion of  a  solid  body. 

If  the  rotation-area  for  the  axis  of  p  is  denoted  by  m  A'p,  the 
preceding  equation  may  assume  the  form 

lDen  =  DtAx-A'yA'z{I?-l!). 

761.     If  the  equation  (43722)  is  multiplied  by  2  dx  and  added 
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to  the  corresponding  products  for  the  other  axes,  the  integral  of 
the  sum  is 

m       —       *I>> 

which  is  simply  the  equation  of  living  forces.  If  p  is  the  semidiame- 
ter  of  the  inverse  ellipsoid  of  inertia,  about  which  the  solid  is 

revolving  at  the  instant,  the  preceding  equation  may  be  reduced  to 

f>JrH_  .,2       cos2^_^2 

ROTATION    OF    A    SOLID    BODY    WHICH    IS    SUBJECT    TO    NO    EXTERNAL    ACTION. 

762.  If  a  solid  body  is  subject  to  no  external  force,  the  centre 

of  gravity  may  be  assumed  for  the  origin.  In  this  case  the  first 

member  of  (43722)  or  (43729)  vanishes,  and  the  equation  (4389) 
becomes 

2 

p2         m 
or 

&'p  =  hp, 

so  that  the  velocity  of  rotation  is  proportional  to  the  diameter  of  the  inverse 

ellipsoid  tvhich  is  the  axis  of  instantaneous  rotation,  which  is  given  by 
Poinsot. 

763.  It  follows  from  §§  757  and  762,  that,  if  q  is  the  perpen- 

dicular let  fall  upon  the  tangent  plane  which  is  drawn  to  the 

inverse  ellipsoid  at  the  extremity  of  the  axis  of  rotation,  q  is  the 

axis  of  maximum  rotation-area,  which  is  invariable  when  there  is 

no  external  force,  and  that 

ft'  h2 



—  439  — 

&'q  =  &p  cos  q>p  =  hp  cos  %  =  hq=  -; 

-°-q 

so  that  the  velocity  of  rotation  about  the  axis  of  maximum  rotation-area, 

as  ivell  as  the  distance  of  the  tangent  plane  which  is  draivn  to  the  inverse 

ellipsoid  of  inertia  at  the  extremity  of  the  axis  of  rotation  are  invariable 

during  the  motion  of  the  solid,  which  are  propositions  given  by  Poinsot. 

They  might  have  been  deduced  with  facility  from  the  geometrical 

theorem  of  §  759,  without  the  aid  of  the  equation  of  living  forces, 

which  might  on  the  contrary  have  been  derived,  in  the  present  case, 

as  an  inference  from  these  theorems,  and  this  was  the  elegant  pro- 
cess of  Poinsot. 

If  the  solid  body  has  no  translation,  the  inverse  ellipsoid  re- 

mains constantly  tangent  to  the  same  plane  which  is  that  of  max- 

imum rotation-area,  and  which  touches  the  ellipsoid  at  the  extremity 

of  the  axis  of  rotation.  It  is  apparent,  then,  that  in  the  motion  of 

the  solid,  the  ellipsoid  rolls  upon  the  fixed  plane  of  maximum  rotation-area, 

without  any  sliding ;  which  is  Poinsot's  mode  of  conceiving  this 
motion. 

764.  The  instantaneous  axis  moves  within  the  body  in  such  a  way 

as  to  describe  the  surface  of  the  cone  of  the  second  degree,  of  which  the 

equation  is 

-4f(W)]=°- 
The  base  of  this  cone  is  an  ellipse  perpendicular  to  the  greatest  axis  of 

the  inverse  ellipsoid  when  q  is  larger  than  the  middle  axis,  or  perpen- 

dicular to  the  least  axis,  when  q  is  less  than  the  middle  axis ;  and  in 

either  case  the  centre  of  the  ellipse  is  upon  the  axis  to  which  it  is  per- 

pendicular. 

When  q  is  equal  to  either  the  greatest  or  the  least  axis,  this 

axis  becomes  the  permanent  axis  of  rotation ;  but  when  q  is  equal 
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to  the  middle  axis,  the  cone  is  reduced  to  a  plane  which  corresponds 

to  one  of  the  plane  circular  sections  of  the  ellipsoid  of  inertia. 

The  axis  of  maximum  rotation-area  describes  within  the  body 

the  cone  of  the  second  degree  of  which  the  equation  is 

2.1(2  — f)*?\  =  Q. 

The  common  plane  of  the  instantaneous  axis  of  rotation  and  of  the 

axis  of  maximum  rotation-area  is  obviously  normal  to  the  surface  of  the 

cone  described  in  the  body  by  the  axis  of  maximum  rotation-area,  which 

defines  the  relative  position  of  these  two  axes  at  each  instant. 

765.  The  position  of  the  axis  of  maximum  rotation-area  is 

fixed  in  space,  and,  therefore,  the  path  of  the  instantaneous  axis 

of  rotation  in  space  is  determined  by  the  preceding  property,  and  a 

distinct  geometrical  idea  of  the  cone  described  by  the  instantaneous 

axis  in  space,  is  obtained  by  conceiving  the  cone  described  in  the 

body  by  the  axis  of  maximum  rotation-area  to  be  compressed  into 

a  line  carrying  with  it  the  cone  described  by  the  instantaneous  axis, 

in  such  a  way  as  not  to  change  the  relative  inclination  of  the  two 
axes  or  the  surface  of  the  cone  of  the  instantaneous  axis. 

The  algebraic  definition  of  the  cone  of  the  instantaneous  axis 

in  space  is  obtained  by  assuming  the  axes  of  the  inverse  ellipsoid 

to  be  arranged  in  the  order  of  magnitude  as  x,  y,  s,  in  which 

the  cone  of  the  axis  of  rotation  has  the  axis  of  x  a,9  its  central  axis, 

and  adopting  the  notation 

cos  JE!,. 

jC=j?+j7_^=/_^(i-^)(i-5)j 

and  similar  equations  for  the  other  axes,  in  which  it  is  unimportant 

that  the   angles  Ex  may  be  imaginary,  but  it  should  be   observed 

!?  +  %- =  <?- 

-ti1-? 
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that  My  is  the  largest  of  the  quantities,  Mx,  My,  and  Mx\  the  fol- 
lowing notation  is  also  to  be  adopted. 

sin2  E  =  —  sin2  Ex  sin2  Ey  sin2  Ez , 

*=(l_|)(i-5)(l_*) 

=v/[(i-f)(i-f)(i-f)]. 
COS7J 

—  M,* 

COS  ?]' 

Mz 

—  MJ 

sin  i 

sin  ?/ 

sin  tf ' 
sin  9 

JW" 

-^) 

J/j,  sin 

*    ' 

sin  8  =  sin  e  sin  (p  ; 

which  give  for  each  axis,  if  xyy,  z  denote  the  extremity  of  the  in- 
stantaneous axis  upon  the  surface  of  the  inverse  ellipsoid, 

I2  x2  sin2E  =  I2  (f  —  M2)  sin2  Ex, 
Dx  _       p Dp ~x~~  p*  —  Mi1 

r2  ,,    9    .   a  n         p2  I2  sin2  Ex  D  p2 I2 Dx2  sm2 Ex ■=zl—^—T.   hr^~- p2  —  M£ 

If,  then,  y  is  the  angle  which  the  plane  of  p  and  q  makes 

with  a  fixed  plane  passing  through  q,  the  cone  of  the  instantaneous 

axis  in  space  is  defined  by  the  equation 

/sin29,i>¥2  +  ̂-=i>^2+i>/  +  i>,2, or 

T)      ..  __    qpD<j,p(p2  —  q2+q2N)   
iV  -  -  (p2-q2)  ̂ (pt-M2)  (M2-p2)  (p2-MZ)-\ 

q  sec  d     -    (q2  -j-  M2  —  M2  sin2  t\  sin2  cp)  My  sin  tf  < 

~  My  sin  tf    i  q3J¥  seed  ' 56 
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which  gives  by  the  use  of  elliptic  integrals 

766.  The  velocity  with  which  the  instantaneous  axis  moves 

in  the  body  is  readily  obtained  from  the  equations  of  the  preced- 

ing section,  which  give  in  combination  with  (43722) 

sin2  E  P 

p  Dtp  =  2x(zDtx)  =  —hx?/z2:x  —  *-je 

■*-z 

hxy 

^2  Sx  (Ix%2  sin2^)  =  h  tt(p2—M?)  ( Mf-p*)  {f-Ml)-\ ; 
whence 

hDJ  = $  Mysmr}n 

and  by  elliptic  integrals 

My  sin  if  h  (t  —  r )  =  &t  (p . 

767.     In  the  especial  case  of 

the  axis  of  maximum  rotation-area  describes  one  of  the  circular  sections  of 

the  ellipsoid  of  inertia,  and  the  equations  of  §  765  become 

Mx  =  Mz  =  Iy, 

j 

COS  fj  =  COS  V]  =  -^ , 

My 

i=  2  n , 

hly(t  —  <v)  =  y, 

s/  (M2  —p2)  =  Mqj  sin  rj  Tan  [h  (t  —  t)  Jfy  sin  17] 

=  \J{M2  —  12  sec2  92)  =  J^  sin  17  Tan  (^^"^ . 
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The  greatest  value  of  p  is,  then,  Mv ,  which  corresponds  to 

t  — %  =  0  ; 

and  its  least  value  is  Iy,  which  corresponds  to 

t  —  r  =  ±  oo  . 

If  the  axis  of  rotation,  therefore,  coincides  with  the  mean  axis  of  the 

ellipsoid  of  inertia  at  the  commencement  of  the  motion,  its  position  will  be 

permanent  in  the  ellipsoid,  although  it  is  affected  with  an  element  of  insta- 

bility ;  but,  in  all  other  instances  of  the  present  case,  the  axis  of  rotation 

describes  the  spiral  of  which  (44230)  is  the  equation,  and  is  constantly  ap- 

proaching the  mean  axis  at  such  a  diminishing  rate  of  velocity  that  it  never 
reaches  this  axis. 

768.  When  the  ellipsoid  of  inertia  is  one  of  revolution,  the 

cones,  described  by  the  instantaneous  axis  in  the  body  and  in  space, 

are  both  of  them  cones  of  revolution,  so  that  the  simplicity  of 

this  case  requires  no  further  illustration ;  but  it  may  be  ob- 

served, that,  when  the  ellipsoid  is  oblate,  the  moving  cone  rolls 

externally  upon  the  stationary,  but  internally  when  the  ellipsoid 

is  prolate. 

769.  This  analysis,  which  is  substantially  the  same  with  one 

of  the  forms  of  Poinsot,  comprehends  the  principal  conclusions  of 

Euler,  Lagrange,  and  Laplace,  and  may  be  extended  to  the  case  in 

which  the  origin  is  any  fixed  point  of  the  solid. 

THE     GYROSCOPE     AND     THE     TOJP. 

770.  When  the  solid  is  subject  to  any  accelerated  force,  and 

its  gyration  is  about  a  fixed  point,  which  may  be  assumed  as  the 

origin,  and  when  the   ellipsoid  of  inertia  with  reference    to    this 
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point  is  an  ellipsoid  of  revolution  about  the  axis  of  z,  the  corre- 
sponding Eulerian  equation  is 

771.  If  the  body  is  also  symmetrical  about  the  axis  of  z,  the 

preceding  equation  becomes 

#z  =  », 

so  that  the  rotation  about  the  axis  of  z  is  uniform. 

772.  If  the  force  is  that  of  gravitation,  the  problem  becomes 

that  of  the  gyroscope.  If  g  is  the  direction  of  gravitation,  h  that 

of  a  horizontal  axis,  which  is  perpendicular  to  the  axis  of  z,  and 

has  that  direction  about  which  the  rotation  from  g  to  z  is  posi- 
tive, if 

j-> 

l=s 

«j 

h 

x) 

if  I  is  the  distance  of  the  centre  of  gravity  from  the  origin,  ls  the 

projection  of  I  upon  g,  and  if  the  gyration  of  the  body  is  resolved 

into  the  three  rotations,  %'  about  the  axis  of  z,  £'  about  the  axis 

of  h,  and  ifj'  about  the  axis  of  g,  the  rotation  about  the  prin- 
cipal axes  are 

G'z  =  i//  cos  £  -f-  /, 

^  =  w'  cos  I  +  £' cos  %  > 

&y  =  i//  cos  §  —  £'  sin  /  ■ 

These  equations  give 

6'x  cos  I  -f  d;  cos  |  =  v''  sin2 1  =  ¥  (i  —  |)  • 
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The  area  about  the  axis  of  g  is  evidently  described  uniformly 

by  the  principles  of  §  753,  so  that  if 

and  if  4  is  a  constant,  we  have 

lz  (6'x  cos  |  -f  tfy  cos  f )  -f  a2 1 6'z  cos f  =  (P  —  £)  i//  -f- »  «2  4  =  n  a2  4 . 

The  equation  (4383)  gives,  in  the  present  case, 

{P  -  id2  /+  p  rs2=  h2  {i2  -  id  (4  -  4) , 

provided  the  constants  7i  and  4  are  determined  by  the  equations 

h2  =  2gl2I2, 

The  elimination  of  if'  from  the  equations  (4457)  and  (44510) 

gives 

p  fg  =  W  {I2  - 12)  (4  -  4)  -  n2  a*  (4  -  4)2. 

773.  The  limiting  values  of  ls  correspond  to  the  vanishing 

values  of  lg,  and,  therefore,  reduce  the  second  member  of  (44519)  to 

zero.  If  these  values  are  denoted  by  ll7  l2,  and  — p,  it  is  evident, 

from  the  form  of  the  equation,  that  p  is  greater  than  I,  while  4  and 

4  are  included  between — <?and-|-/.  The  equations  for  the  spher- 

ical pendulum  of  §§  726  and  727  may  be  directly  applied  to  the 

gyroscope  by  changing  z  into  lg  and  z0}  g1}  and  z2  mto  4?  4?  and  4? 

which  give,  by  (41824_27), 

4  =  4  ~j~T  ? 
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nr  a 

With  this  notation  and  the  equations  derived  from  (41813_14),  the 

expression  of  the  time  is 

and  the  equation  of  the  path  described  by  the  axis  of  this  body 

in  space  is 

which  admits  of  reduction  by  the  process  of  §  735. 

774.  When  the  velocity  n  vanishes,  the  gyroscope  is  re- 

duced to  a  case  of  the  spherical  pendulum  of  which  the  length  is 

775.  When  the  two  roots  lx  and  /2  are  equal,  the  path  of  the 

gyroscope  is  a  horizontal  circle.  The  values  of  ls,  and  of  the  velocity 

of  rotation  can  be  determined  for  this  case  by  the  equations 

7       7  _(?—%)  (h-Q h       h—  p^_2l1li—3l*> 

ain2_  (P-\-2l1li  —  3Zf)2 

~W       (p-ro^-i,)  ■ 

The  denominator  of  the  value  of  (4  —  4)  can  be  written  in  the  form 

p  +  44_3J?  =  3(4  —  hHh  +  k), 

in  which  4  and  4  are  positive  quantities.  If,  then,  lt  is  greater 

than  4,  </  ̂s  positive;  but  when  4  is  contained  between  lh  and  l6,  y' 
is  negative  ;  and  lx  can  never  be  contained  between  —  4  and  —  I- 
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776.  When  the  values  of  4  and  4  are  equal,  if'  vanishes  at 

the  same  time  with  £',  and  we  shall  also  find 

1 3  =z  4  ==  4  > 

and  the  equation  for  determining  4  and  jo  is 

/*2(72  —  42)  =  «V(4  —  4). 

This  is,  approximately,  the  ordinary  case  of  the  gyroscope,  and  it  is 

evident  that  in  this  case  the  values  of  4  and  4  cannot  be  equal, 
unless 

h=.h 

so  that  the  centre  of  the  gyroscope  cannot  under  these  circumstances  de- 
scribe a  horizontal  circle,  which  coincides  with  the  conclusion  of  Major 

jft-V"  -=&  G.  Barnard. 
If,  however,  in  this  case,  n  is  very  large,  it  is  obvious  that  the  differ- 

ence between  12  and  \  is  quite  small,  for  this  difference  is 

h  —  h  —       n*at      ' 

which  is  also  one  of  the  results  obtained  by  Major  Barnard. 

777.  When  4  is  algebraically  greater  than  4?  it  is  also  alge- 

braically included  between  4  and  4>  so  that  if'  is  positive  at  the 
upper  limit,  and  negative  at  the  lower  limit.  But  when  ls  is  alge- 

braically smaller  than  4?  it  is  also  algebraically  smaller  than  either 

4  or  4  5  so  that,  in  this  case,  if'  is  always  negative. 
778.  When  4  is  equal  to  /,  it  is  also  equal  to  l3,  that  is, 

The  velocity  of  rotation  which  corresponds  to  this  case  is  deter- 

mined by  the  equation 

h*  -        I-I2  p+l      ' 



—  448  — 

which  gives 

V 

— '"•"   l-k 

■  ■_    {i—ky 
Bini  —  2i{i-ky 

779.  When  4  is  equal  to  — I,  it  is  also  equal  to  la,  that  is, 

l\  =  —  I  =  /3 . 

In  this  case  /4  is  algebraically  less  than  —  I,  and  the  velocity 

of  rotation  which  corresponds  to  this  case  is  given  by  the  equation 

n** _  (Z-/Q  (h-h) _  V+p)(p  +  h) 
h2   ~  l+k  p  —  l         ' 

which  gives 2l(l+k) 

P  —  L~     i+k     > 

'      w-  2naH  ffl  (     l  +  h   w) 
w~h(i-h)«l{p  +  h)    l\    i-h'Vr 

780.  When  p  is  equal  to  — /,  it  is  also  equal  to  Is,  that  is, 

p  =  —  l=Is. 

In  this  case  4  is  algebraically  greater  than  — /,  and  the  veloc- 

ity of  rotation  which  corresponds  to  this  case  is  given  by  the 

equation 
n2a'_{l-li)  (1,-1,)  __(l-k)  (k-k) 
h2  ~       l+k  l+l. 

J 

which  gives 2l(l+k) 
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781.     If,  in  the  preceding  case,  4  is  equal  to  the  negative  of 

I,  it  will  also  be  equal  to  l2,  that  is, 

and,  in  this  case,  the  elliptic  integrals  disappear  from  the  equations, 

so  that  they  become 
2  ~4 n"  a 

~h, 

=  l  —  ll, 

4  =  /1_(/1-4-/)Tan2[A(^-T)v/(/+4)], 

and  although  the  axis  is  constantly  approaching  the  upper  vertical,  after 

passing  the  loiver  limit,  it  never  reaches  the  upper  limit ;  and  if  it  begins 

at  the  upper  limit  it  never  recedes  from  it. 

782.  In  the  simplest  form  of  the  problem  of  the  spinning  of  the 

top,  the  extremity  of  the  body  is  a  point  in  the  axis  of  revolution,  ivhich 

is  restricted  to  move,  ivithout  friction,  in  a  horizontal  plane.  In  this  case, 

the  equation  (4449)  is  still  applicable,  as  well  as  (4457),  provided 

that  the  moments  of  inertia  are  referred  to  the  centre  of  gravity 

of  the  top,  and  that  I  denotes  the  distance  from  the  centre  of  grav- 
ity to  the  point  in  the  horizontal  plane. 

The  equation  (4383)  gives,  in  this  case,  with  the  notation  of 

§772, 

(/2-42)/+r(l+^^-7,242)/=A2(^-42)a-4); 
and  if  i//  is  eliminated  by  means  of  (4457), 

P{lJrlU!-I^ll)(=h\P-ll){lg-k)-n"ai{lz-lsf. 

The  comparison  of  this  equation  with  (44519),  shows  that  the 

limits  of  motion  are  the  same  as  in  the  case  of  the  gyroscope,  and 57 
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under  the  condition  of  the  equality  of  lx  and  1%,  the  extremity  of 

the  axis  of  the  body  describes  a  horizontal  circle.  The  expressions 

of  the  time  and  of  the  azimuth  of  the  axis  are  not,  however,  capable 

of  expression  by  means  of  elliptic  integrals,  except  in  special  cases, 

of  which  that  of  §  781  is  one,  and  another  corresponds  to  the  case 
of 

■*-x 

783.  "When  the  horizontal  plane,  to  which  the  extremity  of 
the  top  is  restricted,  is  not  smooth,  the  problem  is  usually  more 

complicated,  although  when  the  friction  brings  the  lower  extremity 

to  the  case  of  rest,  it  reassumes  the  form  of  the  gyroscope,  and  this 

is  the  modification  of  the  problem  which  has  been  investigated  by 

Poisson.  In  this  case  of  the  gyroscope,  hoivever,  the  friction  becomes  an 

interesting  feature  of  the  problem,  and  has  a  peculiar  effect  upon  the 

limits  to  ivhich  the  motion  is  subjected.  Instead  of  the  equation  (4449), 

the  rotation  about  the  axis  of  the  body  decreases  uniformly,  which  is  ex- 

pressed by  the  equation 

tfz  =  n —  n2t. 

The  area  described  about  the  vertical  axis  is  also  described  in  this 

case,  at  a  uniformly  decreasing  rate,  which  gives  instead  of  (4457), 

(P  —  I2)  y'  +  0  —  n'  t)  a2  ls  =  n  a2  (73  —  &). 

The  power  of  the  system  is  reduced  by  the  friction  about  the 

body-axis,  which  is  proportional  to  the  angle  %,  and  by  the  friction 

about  the  vertical  axis,  which  is  proportional  to  \\k  If,  then,  the 

mean  values  of  x\)'  and  £  for  a  small  interval  of  time  are  denoted  by 

w'm  and  £OT,  the  equation  of  the  preservation  of  power  may  be  re- 
duced to 

(l*-l*)/+-f£=h2{l2-l2)  (4  +  /o  +  ̂)>. 
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in  which 

2$r?ot=  ji  jf O'  cos  £)  —  n-£j§ y 
n'     ,   ,  ..  n  a2  l's     ,    , 

=  p  Wm  *  COS  Sm   -j¥j2   Xjlm  t . 

The  combination  of  this  equation  with  (45023)  gives 

It  is  obvious  from  this  equation,  that  if  the  friction  about  the 

body-axis  vanishes,  the  height,  to  which  the  gyroscope  ascends, 
diminishes  at  each  oscillation.  If,  however,  the  friction  about  the 

vertical  axis  is  destroyed,  the  height,  to  which  the  gyroscope 

ascends  at  each  oscillation,  increases  when  the  body-axis  is  directed 

upwards  in  its  mean  position  ;  but  this  height  diminishes  when  it 

corresponds  to  a  position  in  which  the  centre  of  gravity  is  h^low 

the  fixed  extremity  of  the  axis.  In  all  intermediate  positions,  and 

when  both  the  frictions  remain,  the  increase  or  decrease  of  ascent 

depends  upon  the  peculiar  relations  of  the  various  constants. 

In  the  spinning  of  the  top,  the  rounded  point  rolls  upon  the 

supporting  plane,  which  induces  an  acceleration  about  the  vertical 

axis  which  is  the  reverse  of  friction,  and  this  is  the  principal  cause 

of  the  ready  rising  of  a  top  into  the  vertical  position  of  apparent 

repose,  known  as  the  sleeping  of  the  top. 

THE    DEVIL    ON    TWO     STICKS    AND    THE    CHILD'S    HOOP. 

784.  Contrasted  with  the  motion  of  the  gyroscope  is  that 

of  a  solid  of  revolution  of  which,  instead  of  a  fixed  point  of  the 

axis,  the  circumference  of  a  section  drawn  through  the  centre  of 
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gravity,  perpendicular  to  the  axis  is  restricted  to  move  upon  a 

point.  A  convenient  type  of  this  class  of  motion  may  be  found 

in  the  familiar  toy  called  the  devil  on  tivo  sticks.  If  the  friction  is 

neglected  in  this  case,  and  the  notation  adopted  from  the  preceding 

problem  of  the  gyroscope,  the  rotation  about  the  body-axis  is  found 
to  be  constant,  and  the  equation  for  the  preservation  of  area  about 

the  vertical  axis  is,  by  a  slight  reduction, 

Y  sin2  £  -\-  n  cos  £  =  B, 

in  which  B  is  an  arbitrary  constant.  The  principle  of  power  gives, 

by  reduction,  the  equation 
2  2 

i//  sin2  £  -|-  £'  =  H-\-  a  sin  £ , 

in  which  H  is  an  arbitrary  constant,  and  a  is  a  constant  which 

depends  upon  the  form  of  the  solid  and  the  radius  of  the  confined 
circumference. 

785.  The  combination  of  (4529)  and  (452M)  gives 

sin2  £  £/2  =  (H-\-  a  sin  £)  sin2  £  —  (B  —  n  cos  £)2, 

from  which  it  is  obvious  that,  in  the  general  case,  sin  £  cannot 

vanish,  that  is,  the  body-axis  cannot  become  vertical. 

786.  When  B  vanishes,  and  H  is  greater  than  a,  we  have 

the  ordinary  case  of  the  devil  on  two  sticks,  and,  in  this  case,  there 

are  three  real  values  of  sin  £,  for  which  the  second  member  of 

(45220)  vanishes.  Two  of  these  values  of  sin  £  are  contained  be- 

tween positive  and  negative  unity,  and  one  of  them  is  positive, 

while  the  other  is  negative ;  they  give  the  limit  of  the  motion  of 

the  axis,  and  correspond  respectively  to  the  cases  in  which  the 

centre  of  gravity  is  below  or  above  the  point  of  dispersion,  which 

latter  is  of  course  the  actual  case  of  the  toy.     In  either  case,  the  end 
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of  the  body-axis  describes  a  curve  ivhich  is  similar  in  form  to  the  figure  8, 

and  the  apparent  want  of  rotation  about  the  vertical  axis  arises  from  the 

repeated  change  in  the  direction  of  rotation  which  occurs  at  each  successive 

return  of  the  bodg-axis  to  the  horizontal  position. 

787.     When  B  vanishes,  and  II  is  greater  than  a,  but    satis- 
fies the  inequality, 

H>%{hnaf n 

the  three  values  of  sin£,  for  which  the  second  member  of  (45220) 

vanishes,  are  all  contained  between  positive  and  negative  unity. 

The  positive  value  is  the  upper  limit  of  the  inferior  position  of  the 

centre  of  gravity,  as  in  the  preceding  case,  and  as  it  would  be  if 

the  inequalit}^  of  this  section  were  not  satisfied,  so  that  both  the 

negative  values  were  to  become  imaginary  or  equal.  But  the  two 

negative  values  are  the  limits  of  motion,  when  the  centre  of  grav- 

ity is  higher  than  the  point  of  suspension,  and  in  this  case  the  bodg- 
m 

axis  describes  a  waving  curve,  and  continues  to  rotate  in  one  and  the  same 

direction  about  the  vertical  axis,  ivithout  ever  becoming  horizontal,  ivhich 

phenomenon  usually  occurs  in  the  devil  on  two  sticks,  at  the  beginning  of 

the  game,  and  before  it  has  attained  a  sufficiently  rapid  rotation  to  assume 

a  horizontal  position. 

When  H  satisfies  the  equation 

R='6^nay  —  n2, 

the  two  negative  limits   of  sin  £  are    equal,  and   correspond   to    a 

gyration  of  the  body-axis  about  the  vertical  axis  in  a  right  cone. 

The  motion  which  corresjDonds  to  a  positive  limit  of  sin  £  in  this 

case  can  be  expressed  by  means  of  elliptic  integrals. 

788.     Whenever  H  satisfies  the  inequality 

H>Bl  +  a, 
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the  body-axis  may  become  horizontal  with  the  centre  of  gravity 

above  the  point  of  suspension,  and  in  this  position  its  gyration 

is  positive  or  negative  in  conformity  with  the  sign  of  B .  If,  more- 

over, n  is  greater  than  B ,  the  vibration  of  the  body-axis  from  the 

horizontal  position  extends  so  far  as  to  reverse  the  direction  of  the 

gyration  about  the  vertical  axis ;  but  if  n  is  less  than  B,  the  direc- 

tion of  this  gyration  remains  unchanged. 

When  H  satisfies  the  inequality 

H<B2-\-a, 

the  body-axis  cannot  become  horizontal  with  the  centre  of  gravity 

above  the  point  of  suspension. 

789.  The  case  of 

B  =  ±n, 

constitutes  an  exception  to  the  conclusion  of  §  785,  and  it  is 

obvious  that  in  this  case  the  body-axis  may,  and  generally  will, 
become  vertical. 

790.  The  case  of  a  hoop  rolling  upon  a  horizontal  plane,  is  in- 

cluded in  that  of  any  rolling  solid  of  revolution,  but  which  is  so 

formed  that  a  circumference  of  the  section  of  §  784  is  restricted  to 

roll  upon  a  horizontal  plane.  The  rolling  condition  is  geomet- 

rically satisfied  by  the  restriction  that  the  point  of  contact  with 

the  plane  is  stationary  during  the  instant  of  contact.  If  the  nota- 

tion of  the  preceding  sections  is  retained,  and  if  /  is  the  radius  of  the 

rolling  circumference,  the  velocities  of  the  centre  of  gravity  in  the 

directions  of  the  body-axis  and  of  a  horizontal  perpendicular  to  the 

body-axis  are,  respectively, 

It'  andj£. 



—  455  — 

The  equation  of  the  power  of  the  system  multiplied  by  2  I*,  and 
divided  by  m  becomes,  then, 

i/sin2  §  +  A  r+  $1=  H+  a  sin  §  -f  B  n2, 
in  which 

A=1  +  PI2, 

a=z2gll%, 

ii  is  the  initial  velocity  of  rotation  about  the  body  axis,  and  II  is 

arbitrary. 

The  application  of  Lagrange's  canonical  forms  to  the  preceding 
expression  of  the  power  gives  the  equations 

Dt  (Y  sin2  £  -f  B  vz  cos  j-)  =  0. 

and  by  integration  and  reduction 

vz  =  n, 

y'  sin2  £  -]-  i>  «  cos  l—C, 

A  sin2 1  r  =  (5"+  a  sin  £)  sin2  t  —  (C—Bn  cos  £)2 ; 

and  it  is  obvious  that  these  expressions  coincide  in  form  with  these 

which  were  obtained  in  the  investigation  of  the  devil  on  tivo  sticks, 

so  that  the  various  inferences  made  in  that  problem  are  applicable  to  the 

motion  of  the  hoop.  The  analysis  of  the  present  problem  is  identical 

with  that  which  was  adopted  by  Nulty. 

791.  When  the  hoop  is  gyrating  with  its  plane  in  a  position 

which  is  nearly  horizontal,  the  cube  and  higher  powers  of  sin  £  may 

be  neglected,  in  which  case  the  equation  (4552i)  gives  the  integral 

2  j2 

r=s;+p* 
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in  which  it  is  sufficient  to  observe  that  £0  is  the  initial  value  of  £ 

and  b  is  constant,  so  that  the  hoop  constantly  tends,  by  its  inertia,  to  rise 

from  this  position,  which,  combined  ivith  the  irregular  action  of  friction,  ac- 

counts for  the  peculiar  forms  of  gyration,  which  frequently  accompany 

the  fall  of  the  hoop. 

ROTARY   PROGRESSION,   NUTATION,    AND    VARIATION. 

792.  The  positions  of  the  axis  of  rotation  and  of  maximum 

rotation-area  may  be  referred  to  a  fixed  axis,  and  the  change  of 

inclination  to  this  fixed  axis  may  be  called  nutation,  while  the  gyra- 

tion about  it  is  called  progression  ;  and  the  change  in  the  magnitude 

of  the  rotation,  or  of  the  maximum  rotation-area  may  be  called 

variation.     ~ 

793.  It  is  obvious  from  the  simple  principles  of  the  computa- 

tion of  rotation-areas,  that  an  accelerative  force  which  tends  to  give 

a  rotation-area  about  an  axis  perpendicular  to  the  axis  of  maximum 

rotation-area,  does  not  cause  a  variation  of  the  rotation-area,  but 

only  a  motion  of  the  axis  so  as  to  incline  it  in  the  direction  of  the 

accelerative  axis.  Hence  if  the  accelerative  axis  is  perpendicular  to  the 

fixed  axis  as  well  as  to  the  axis  of  maximum  rotation-area,  progression 

is  produced ;  if  it  is  in  the  common  plane  of  the  fixed  axis  and  axis  of 

maximum  rotation-area,  while  it  is  perpendicular  to  the  latter  axis,  nutation 

is  produced ;  if  it  is  in  the  direction  of  the  axis  of  maximum  rotation- 

area,  variation  is  produced. 

The  three  directions  of  the  accelerative  axis,  which  correspond 

to  the  respective  production  of  progression,  nutation,  and  variation 

are  mutually  rectangular ;  so  that  it  is  easy  to  determine  the  rela- 

tive tendency  of  a  given  force  to  these  different  modes  of  action. 

This  neat  analysis  is  derived  from  Poinsot. 
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794.  If  the  accelerative  axis  is  constantly  perpendicular  to 

the  fixed  axis,  and  also  to  the  axis  of  maximum  rotation-area,  the 

motion  will  be  wholly  that  of  progression,  of  which  mode  of  action 

a  fixed  type  is  presented  in  the  precession  of  the  equinoxes,  the 

discussion  of  which  problem  must  be  reserved  for  the  Celestial 

Mechanics.  If  the  accelerative  axis  is  constantly  in  the  plane  of 

the  fixed  axis  and  of  the  axis  of  maximum  rotation-area,  while  it  is 

perpendicular  to  the  latter  axis,  the  motion  is  exclusively  that  of 

nutation,  and  this  form  of  action  is  well  exhibited  in  the  friction  at 

the  point  of  the  top  as  it  rolls  upon  the  horizontal  plane. 

ROLLING   AND    SLIDING   MOTION. 

795.  A  special  example  of  the  case  of  rolling  motion  has 

been  considered  in  the  hoop,  and  the  mode  of  analysis  tvhich  ivas  there 

adopted  can  be  applied  to  the  general  investigation,  as  it  has  been  done 

by  Nulty.  Thus,  let  the  axes  of  x,  g,  z  have  the  same  directions 

with  the  principal  axes  of  the  rolling  solid,  let  xg,gs,  and  sg  denote 

the  coordinates  of  the  centre  of  gravity  of  the  solid,  and  xT,  gT,  and 

zT  those  of  its  point  of  contact  with  the  surface  upon  which  it  rolls. 

The  condition  of  rolling  without  sliding  gives  the  equation 

*£  =  C^-^K-- (*,-*,)  4 

yi 

with  the  similar  equations  for  the  other  axes.     The  expression  of 

the  power  is 

T=  h  m  Zx  [i  [1  +  (g-ggf  +  (s-ss)2]-  2  (y-gs)  (*—*,)  Vy  £)], 

from  which  the  equations  of  nutation  can  be  readily  obtained  by 

Lagrange's  canonical  forms. 

796.     If  the  solid  slides  upon   the  surface,  it'  still  remains  in 
58 
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contact  with  the  surface,  so  that  the  point  of  contact  does  not 

move  in  the  direction  of  the  normal  to  the  surface.  If  the  direc- 

tion of  the  normal  is  denoted  by  N,  this  condition  is  expressed  by  the 

equation 

which  is  given  by  Anderson.  This  is  the  only  condition,  to  which  the 

motion  is  subject,  in  the  case  of  perfect  sliding  motion. 

797.  When  the  sliding:  is  accompanied  ivith  friction,  the  friction 

may  be  regarded  as  a  force  proportional  to  the  pressure  applied  at  the  point 

of  the  solid,  ivhich  is  in  contact  tvith  the  surface,  in  a  direction  opposite  to 

that  of  its  motion. 

When  the  velocity  of  rasure  is  destroyed  by  friction,  the  motion 

ceases  to  be  sliding  and  becomes  a  rolling  motion,  in  ivhich  form  it 

continues  as  long  as  the  force  of  friction  exceeds  the  accelerative  force  in 

the  direction  of  friction. 

CHAPTER  XIII. 

MOTION   OF    SYSTEMS. 

798.  The  motion  of  every  system  is  necessarily  subject  to  the 

Law  of  Poiver,  expressed  in  §  58,  to  the  law  of  the  motion  of  the  centre 

of  gravity  of  §  452,  and  to  the  laiv  of  areas  of  §  753.  These  three 

principles  not  only  apply  to  the  whole  system,  but  to  each  portion 

of  it  considered  as  a  system  in  itself. 

799.  The  various  forces  which  act  upon  a  system  are  often 

quite  different  in  the  magnitude  of  their  effects,  so  that  they  may 
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be  considered  from  this  point  of  view  as  different  orders  of  force. 

In  a  first  investigation,  all  but  the  forces  of  the  first  order  may  be 

neglected  ;  and  in  subsequent  approximations  the  forces  of  the 

inferior  orders  may  be  successively  introduced,  as  disturbing  forces 

and  their  various  effects  may  be  determined  as  perturbations  of  cor- 

responding orders. 

800.  The  separation  of  the  system  into  partial  systems  is 

closely  connected  with  this  subdivision  of  the  forces,  for  it  may 

easily  be  seen  that  the  forces,  which  are  of  chief  importance  in 

the  whole  system,  or  some  portion  of  it,  are  least  active  in  other 

portions  of  this  system.  Whenever,  for  instance,  the  parts  of  any 

portion  are  so  isolated  from  the  rest  of  the  system,  that  their 

relative  changes  of  position  are  of  small  influence  out  of  the 

portion,  they  should  be  treated  by  themselves  as  a  partial  system, 

and,  relatively  to  all  the  other  parts,  may  be  considered  as  con- 

densed upon  their  common  centre  of  gravity. 

LAGRANGE  S    METHOD    OF    PERTURBATIONS. 

801.  The  method  of  perturbations  which  originated  with  La- 

grange, and  which  depends  upon  the  variation  of  arbitrary  constants, 

deserves  the  first  consideration  from  its  surpassing  elegance  ;  and 

it  is  the  natural  introduction  to  the  other  modes  of  investigation. 

Suppose,  then,  that  a  complete  system  of  integral  equations 

is  obtained,  when  all  the  forces  but  those  of  the  first  order  are 

neglected,  and  let  one  of  these  equations  involving  a  single  arbi- 

trary constant  be  denoted  by  (19920).     Let 

£2  denote  the  potential  of  the  forces  of  the  first  order,  and 

W  that  of  the  forces  of  the  inferior  orders, 
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and  the  equations  of  motion  (166a_3)  assume  the  forms 

If  the    constant   member  of  (19920)    is   now    assumed   to    vary,  its 
derivative  is 

Dtai  =  Zv{DJiDnT)  =  ZkiZv{DJiD11fk)DfW-\, 
for  by  (19925) 

0  =  Sn  (Br/  ft  Du  II-  DJ{  Dri  II) . 

The  condition  that  W  does  not  involve  co  gives  algebraically, 

'    zk(i)ufknfy)  =  o., 
and  the  notation 

Af  =  DJk  DJt  —  Dnfi  DJk, 
Bf  =  ZvAf, 

gives  in  combination  with  (4608) 

in  which  a  may  be  substituted  for  its  equal  /  in  the  second  member. 

802.  The  integrals  of  (460^)  obtained  with  the  omission  of 

the  forces  of  the  inferior  orders,  admit  of  arbitrary  variation  of  the 

arbitrary  constants,  so  that  if  such  variations  taken  with  reference 

to  arbitrary  elements  which  may  be  denoted  by  x  and  1,  the  cor- 

responding variations  of  (4602_^)  with  the  omission  of  the  terms  de- 

pendent upon  W  are 

DtDKa>  =  -I)vI)KII, 
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and  similar  equations  for  X  which  give 

=  Zv{D1D(JHDKto+DxDvHDKn-DKDJID^-DKDvHD^) 
=  D,DKR-I)KI),R=0, 

so  that  if 

C^1  does  not  involve  the  time  explicitly. 
803.  If  x  is  the  element  of  actual  variation  of  the  arbitrary 

constants  when  the  inferior  forces  are  introduced,  which  element 

may  be  expressed  as  the  time  when  it  is  so  connected  with  the  arbi- 
trary constants,  as  not  to  cause  ambiguity,  the  variations  of  the 

equations  ̂ GO^),  give 

so  that  Dx  W  does  not  involve  the  time  explicitly.  When  x  and  I 

are  changed  to  at  and  ak,  it  is  sufficient  to  retain  i  and  h  in  the 

notation   C£'],  so  that  it  is  apparent  from  (46118)  that 

By  elimination  from  the  equations  represented  in  the  preced- 
ing form,  the  value  of  Dt  a{  can  be  obtained  identical  with  that  of 

(4602o),  so  that  it  is  evident  that  B$  does  not  contain  the  time  ex- 
plicitly.    It  is  also  apparent  that 

except  when 
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in  which  case 

804.  The  independence  of  B{1]  of  the  time  in  an  explicit  form, 
renders  it  possible  to  compute  its  value  for  any  instant,  and  the 

value  thus  obtained  is  universally  true.  Thus  in  the  especial  case 

in  which  the  arbitrary  constants  are  the  initial  values  of  rj,  w,  etc., 

the  values  of  B[j^,  computed  for  the  initial  instant,  are  easily  seen 
to  vanish  when  the  k  and  i  refer  to  different  points  of  the  system ; 

but  when  Jc  and  i  refer  to  the  i]0  and  tu0  of  the  same  point,  the  value 

of  B[k]  is  positive  or  negative  unity,  so  that 

Dtco0  =  DvT. 

In  the  case  of  rectangular  coordinates  these  equations  become, 

for  either  axis, 

Dtx'  =  Dx  W. 

805.  The  especial  variation  of  the  constant  H  may  be  de- 

rived from  the  equation  (1717)  which  gives 

ntir=zvii)vTDtn)  =  i)tTiT, 

provided  that  t  is  intended  to  express  the  t  which  is  involved  in 

any  of  the  quantities  denoted  by  rj.  This  development  of  the 

variation  of  the  arbitrary  constants  is  taken  from  Lagrange. 

LAPLACE  S  METHOD  OF  PERTURBATION. 

806.     The  values   of  w,  ij,  etc.,  can   be  substituted  from  the 

first  integrals  directly  in  the  first  form  of  the  second  member  of 
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(460-),  and  the  integral  values  of  c^  which  are  then  obtained  can 

be  introduced  into  to,  17,  etc.,  as  a  second  approximation  to  their 

values.  This  mode  of  analysis  is  especially  useful  when  the  equa- 

tions of  the  first  form  are  linear  with  reference  to  rj,  o),  and  their 

derivatives.  For  in  this  case  it  is  apparent  that  the  functions  de- 

noted by  fi  are  linear  with  reference  to  rj,  to,  which  may  be  demon- 

strated in  the  following  manner.  Let  rji}  toL,  etc.,  be  special  values 

of  ?],  to,  of  which  there  must  be  as  many  independent  values  as 

there  are  equations  expressed  by  (4602_4).  The  arbitrary  constants 

a{  may  then  be  such  that  the  complete  values  of  rj  and  co  are 

to  =  S4  (at  tot) ; 

whence  the  values  of  aL  assume,  by  elimination,  the  linear  form  in 

reference  to  1],  to,  etc.  The  values  of  Dafi}  are  then  functions 

of  t,  and  do  not  involve  rj,  to,  etc.  If  D  *P  represent  forces,  which 

are  also  functions  of  the  time,  the  integrals  of  (4607)  can  be  com- 

pletely obtained.  By  the  substitution  of  these  values  of  at  thus 

obtained  in  the  expressions  of  rj,  the  complete  values  of  rj  are  ob- 

tained, which  often  admit  of  useful  modification,  and  the  success  of 

the  method  depends  upon  the  skill  with  which  this  modification  is 
effected. 

807.     A  special  case  of  frequent  occurrence  in  the   problems 
of  celestial  mechanics  is  one  in  which 

10=1]', 

H=  corf  -j-  i  a2  if. 

The  value  of  the  integral  in  this  case  is,  for  a  first  approximation, 

rj  ==  a  cos  at  -\-ax  sin  a  t , 
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o)  =  —  a  a  sin  a  t  -j-  a  ax  cos  a  t. 

a  =  rj  cos  at   sin  a t  =f, 

ax  =  rj  sin  a t  -j- -  cos  at=f1. 

The   values   of  the    constants  obtained  by  integration  of  (4602_^); 
are  increased  to 

and 
<*-\j;{DvT^at).. 

<*i  + -/(.Oleosa*; 

so  that  the  complete  value  of  r\  is 

i'j=za  cos  at  -f-  «isin  at   —  j  (Dv  Tsmat)  _j_sma    /  (j)^  Wcosat). 

808.  The  disturbed  motion  of  the  ordinary  projectile  ex- 
hibits an  easy  example  of  change  of  form.  In  this  case,  by  the 

introduction  of  rectangular  coordinates  in  which  the  axis  of  x  is 

horizontal,  and  that  of  y  vertical,  the  equations  are 

Dtx'  =  DxW, 

Dty'  =  -g  +  DyT, 

whence 

%  =  at  +  a1  +  tftDxW— ft{tDxW) 

=  at  +  ax-\-f?DxT, 

y  =  —:hgf+azt  +  az  +  tftDyV—ft(tDyW) 

=  —  i</?  +  a2t-\-a3+f?I)v¥. 
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Hansen's    method    of  perturbations. 

809.  If  Vt  denotes  any  function  of  the  time  and  of  the  arbi- 
trary constants  in  the  undisturbed  orbit,  its  value  in  the  disturbed 

orbit  may  be  obtained,  from  the  integration  of  the  equation 

by  the  substitution  of  t  for  %  after  the  integration  is  performed. 

In  the  performance  of  the  integration,  the  arbitrary  constants  are 

to  be  regarded  as  variable,  and  the  value  of  Vt  in  the  undisturbed 

orbit  is  to  be  taken  for  the  initial  value  of  VT.  This  introduction 

of  x  for  t  constitutes  the  first  principle  of  Hansen's  method  of  pertur- 
bations. 

810.  The  application  of  this  method  to  the  example  of  §  808, 

gives,  for  the  values  of  x  and  y 

x 
:.  =  at  +  W+f£(*--t)I)m¥], 0 

t 

o  t 

811.     In  the  example  of  §  807,  the  value  of  rj  given  by  this 
method  is 

t 

■}]  =  a  cos  a  t  -\-  «!  sin  a  t   J     sin  a  (t  —  t)  Dv  TT  L 
0 

in  which  the  form  of  notation  is  slightly  modified  so  that  no  subse- 
quent change  of  r  to  t  is  necessary.  A  case,  which  often  occurs  in 

connection  with  this  example,  is  worthy  of  notice  ;   it  is  when 

Dn  ¥=hcos  (mtf-fe), 
59 
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in  which  case  the  value  of  rj  is 

rj  =  a  cos  a  t  -J-  ax  sin  a  t  -J-  -2     2  cos  (m ̂  -|-e) . 

In  the  special  case  of m  =  a, 

this  value  of  ?j  becomes 

7]  =  a  cos  a  t  -\-  «!  sin  a  t  -f-  —  tf  A  sin  {a  t  -J-  e) . 

812.     If  the  function  F  increases  with  the  time  from  negative 

to  positive  infinity,  so  that  for  all  values  of  t 

DtV>0, 

there  is  an  instant  which  may  be  denoted  by  z,  for  which  the  un- 
disturbed value  of  V  coincides  with  its  disturbed  value  for  the  in- 

stant denoted  by  t.  The  corresponding  value  of  zT  is  a  function  of 

both  t  and  t,  which  may  be  introduced  into  VT  instead  of  r,  but 

after  this  substitution  all  the  changes  in  the  value  of  VT  must  arise 

from  those  of  zT,  so  that 

DtV=D    V  Dtzr, 

DTVT  =  D    V  DrzT, 
T  T 

and  the  differential  equation  for  the  determination  of  zT  is 

In  the  integration  of  this  equation,  %  must  be  taken  as  the  initial 

value  of  zTi  whence,  for  the  first  approximation, 

DTzT=l. 
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After  the  integration  is  performed,  the  value  of  z  is  derived  from 

that  of  zT  by  changing  t  to  t . 

813.     The  disturbed  value  of  any  other  function,  U  may  be 

partially  obtained  by  the  substitution  of  z  for  t,  and,  since 

DruT=DTuZr  +  D.r  uZtDtzt, 

the  residual  portion  is  obtained  from  the  equation 

Dt  Uz=Dt  Ut—DZt  UzDt  zT, 

DTUT  x  -.        D  Uz 

'T? 

by  changing  %  for  t  after  the  integration  is  performed,  and  complet- 
ing the  integration,  so  that  JJZ  may  be  the  value  of  Uz  when  t 

vanishes. 

This  introduction  of  the  disturbed  time,  which  'is  denoted  by  z,  con- 

stitutes the  second  principle  of  Hansen's  method  of  perturbations,  and 
upon  the  skilful  use  of  the  two  principles  thus  developed,  com- 

bined with  an  appropriate  choice  of  coordinates,  depends  the  suc- 
cess of  this  highly  ingenious  and  original  method. 

814.     It  is  obvious  that,  in  the  first  approximation, 

dtuZt=o, 

so  that  the  last  term  of  (467n)  disappears  for  this  approximation. 

815.  If  V  is  such  a  function  that  it  can  be  expressed  in  terms 

of  r],  etc.,  without  involving  a>,  etc.,  or  t,  it  follows  from  §801, 

that  the  second  member  of  (46 58)  vanishes,  when  %  is  changed  to 
t,  so  that  this  must  also  be  the  case  with  the  second  member  of  the 

equation  derived  from  (46627), 
DtzT 
DT*r -  (Dai  Vrn     \ 
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The  value  of  the  first  member  of  this  equation  can  therefore  be 

obtained  by  the  integration  of  the  equation 

ID  z  \  iDr  VrDaiDT  VT-Dai  VTD\  VT  , 

T~T 

provided  that  the  integration  is  completed  in  conformity  with  the 

previous  condition. 
816.     If  one  of  the  arbitrary  constants,  which  may  be  denoted 

by  §  is  so  involved  in  V  that 

in  which  K  does  not  involve  the  time,  or  if  the  form  of  V  is 

the  corresponding  term  of  the  second  member  of  (4684)  is 
D2  V 

The  corresponding  term  of  the  second  member  of  (467n),  if  U  has 

the  same  form  with  V —  /3  in  (468u),  is 

DjUr  Dt(5. 

DTVT 

817.  If  one  of  the  arbitrary  constants,  which  may  be  de- 

noted by  y  is  so  involved  in  U  that  U —  y  may  be  expressed  as  a 
function  of  V  without  explicitly  involving  y  or  t,  the  corresponding 

term  of  (467n)  is  reduced  to 

Ay- 818.  The  further  development  of  the  methods  of  perturba- 
tions depends  upon  the  peculiarities  of  the  problem  to  which  they 
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are  applied.  But  the  example,  to  which  they  are  most  appropriate, 

is  that  from  which  they  have  derived  their  origin,  the  motions  of 

the  bodies  of  the  solar  system,  so  that  their  ampler  discussion  is  re- 
served for  the  Celestial  Mechanics. 

SMALL    OSCILLATIONS. 

819.  When  the  motion  of  a  system  is  restricted  to  small 

oscillations  about  a  position  of  equilibrium,  the  quantities  t],  etc., 

may  be  supposed  to  be  so  small  that  the  terms  of  T  and  £2,  which 

are  of  more  than  two  dimensions  in  "reference  to  these  quantities 
and  their  derivatives,  may  be  neglected. 

The  value  of  T  may,  then,  by  (1658),  be  expressed  in  the  form 

in  which  the  quantities  denoted  by  T^i],  are  constant. 
If  the  values  of  r\,  etc.,  are  supposed  to  vanish  for  the  position 

of  equilibrium,  the  derivative  of  £2  with  reference  to  either  of 

these  variables  vanishes  for  the  same  position,  so  that  £2  must  have 
the  form 

£2  =  £2Q-\-2h)i(£2fr]kr}i), 

in  which  the  quantities,  denoted  by  £2$,  are  constant. 

The  equations  of  motion,  derived  from  Lagrange's  canonical 
forms,  are,  therefore,  represented  by 

that  is,  ilwj  constitute  a  system  of  linear  differential  equations  ivith  constant 

coefficients. 

820.  It  follows  from  the  linear  forms  of  these  equations,  that 
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the  various  systems  of  values  by  which  they  are  satisfied,  can  be 

combined  by  addition  into  a  new  system.  This  is  the  mathematical 

expression  of  the  important  physical  law  of  the  possibility  of  the 

superposition  of  small  oscillations. 
821.  With  the  notation 

af  =  T™D2  —  £lf, 

the  equation  (46928)  assumes  the  form 

If,  then,  there  are  m  of  the  quantities  r\ ,  etc.,  if  —  n2  is  one  of  the 

values  of  D2  which  satisfies  the  equation,  expressed  in  the  notation 
of  determinants, 

any  system  of  values  of  ̂   is  expressed  by  the  equation 

i]i  =  Eism(nt-{-en), 

in  which  en  is  'an  arbitrary  constant,  and  the  constants  E{  have  a 
common  arbitrary  factor.  The  mutual  ratios  of  the  quantities  Ei 

are  determined  from  the  equations  derived  from  (47010)  by  the 

substitution  of  — n2  for  D2,  and  E  for  rj.  Hence,  by  §  340,  Et  is 
determined  in  the  form 

Ei  =  EnD^%>m, 

in  which  En  is  an  arbitrary  constant. 

822.  By  the  combination  of  all  the  values  of  n,  the  complete 

value  of  rjt  is 

Vl  =  Zn  \En  Df  ̂ m  sin  (n  t  +  «.)]  ; 

but  it  is  evident  that  only  those  values  of  n  should  be  retained 

for   which    the    values   n2   given  by  (47014)  are  real,  positive,  and 
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unequal.  For  all  other  values  of  n2,  the  time  t  would  be  intro- 

duced into  the  value  of  i]t  in  such  a  way  that  it  would  indefi- 

nitely increase.  .It  is  plain,  therefore,  that  the  only  values  of  n, 

which  can  be-  retained  in  (4702S),  are  those  which  correspond  to 

elements  of  stability,  so  that  if  the  elements  i]  are  selected  with 

a  due  regard  to  the  conditions  of  equilibrium,  those  which  corre- 

spond to  the  unstable  equilibrium  will  disappear  of  themselves 

with  the  rejection  of  the  corresponding  values  of  n. 

When  the  position  of  equilibrium  is  stable  ivith  reference  to  all  of  its 

elements,  all  the  m  values  of  n2  are  real,  positive,  and  unequal. 
823.     The  forms  of  T  and  S2  of  §  819,  lead,  by  inspection,  to 

the  equations 

TU]  =  T-lk] 

and  the  equation  (46928)  gives,  for  each  value  of  n, 

if  n  written  as  an  accent  indicates  a  special  value  of  n,  to  which  the 

functional  form  is  applicable.     If  £„  is  determined  by  the  notation 

and  if  the  equations,  represented  by  (46928),  are  added  together 

after  being  multiplied  by  Eln\  the  sum  is 

If,  moreover,  Tn  denotes  the  value  of  T  when  ̂ '  is  changed  to  Ej-"], 
the  value  of  £„,  given  by  integration,  is 

in  =  Tnsm(nt-\-tn). 

The  elements  £  thus  obtained,  correspond  to  the  independent  ele- 
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ments  of  stability  which  affect  the  position  of  equilibrium,  and 

embody  the  true  analysis  of  the  various  forms  of  oscillation  of 

which  the  system  is  susceptible.  When  the  different  values  of  n 

have  a  common  divisor,  the  oscillation  is  evidently  periodic. 

This  investigation  of  the  theory  of  small  oscillation  coincides, 

in  substance,  with  that  of  Lagrange. 

824.  The  importance  and  variety  of  the  forms,  in  which 

oscillation  and  vibration  are  physically  exhibited,  give  peculiar 

interest  to  the  mechanical  discussion  of  this  subject.  But  the  mode 

of  analysis  is  so  dependent  upon  the  form  of  the  phenomena,  that 

the  special  researches  are  reserved  for  the  chapters  to  which  they 

are  appropriate. 

A    SYSTEM    MOVING    IN    A    RESISTING    MEDIUM. 

825.  When  a  system  moves  in  a  resisting  medium,  the  law 

of  resistance  may  be  regarded  as  dependent  upon  the  velocity,  so 

as  to  be  the  same  for  all  the  bodies,  but  it  may  vary  by  a  constant 

factor  from  one  body  to  the  other.  If  this  constant  factor  for  the 

mass  mi  is  denoted  by  ki}  and  if  T^  is  the  function  of  the  velocity 

Vi,  the  resistance  to  the  mass  nti  moving  with  the  velocity  vt  is  kt  Vt. 

If,  then,  rectangular  coordinates  are  adopted,  the  equations  of 
motion  assume  the  form 

t     l        nti     xi  l     %  v{ 

The  corresponding  form  of  the   equation  for  the  determination  of 

the  Jacobian  multiplier  is,  by  §§  402  and  451, 

Dt  log  Mifk  =  2<  [h  Zx  DX{  M\ 



—  473  — 

This  equation  becomes,  when  the  motion  is  unrestricted  in  space, 

Dt  log  ,**  =  St  [kt  (2  J  +  A,  v)]  ; 

when  the  motion  is  in  a  plane, 

DtlogM  =  Si[ki(^-\-DVtv)]; 

when  the  motion  is  in  a  straight  line, 

Dt\og^  =  Zi{lciDViVi). 

826.  It  is  evident  from  the  linear  form  of  these  equations, 

that  the  multiplier  can  he  separated  into  factors,  each  of  zvhich  shall  inde- 

pendently correspond  to  a  term  of  V} . 

827.  When  the  resistance  is  constant,  and  the  motion  in  a 

straight  line  ;  or  when  the  resistance  is  inversely  proportional  to 

the  velocity,  and  the  motion  is  in  a  plane  ;  or  when  the  resistance 

is  inversely  proportional  to  the  square  of  the  velocity,  and  the 

motion  is  unrestricted  in  space,  the  multiplier  becomes  unity.  In 

either  case  of  motion,  a  term  of  the  corresponding  form  may  be 

added  to  the  resistance  without  affecting  the  multiplier. 

828.  When  tJie  resistance  is  proportional  to  the  velocity,  the  value  of 

the  multiplier  in  the  case  of  unrestricted  motion  is 

in  the  case  of  motion  in  a  plane  it  is 

asito  =  c2tliki ; 

and  in  the  case  of  the  straight  line  it  is 

njbMd  =  Cf  S«  ki . 

60 
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All  these  results,  with  regard  to  the  multiplier,  are  derived 
from  Jacobi. 

829.  When  the  resistance  is  proportional  to  the  square  of  the  velocity, 

the  value  of  the  multiplier  for  motion,  which  is  unrestricted  in 

space,  is 
cdk  ■==(•*?«  (*««<).; 

for  motion  in  a  plane,  it  is 

and  for  motion  in  a  straight  line,  it  is 

<&MD  =  c2'zi(kisi>. 

830.  The  sum  of  the  equations  (47226),  multiplied  by  m{  x\,  is 

Dt(F—£2)  =  —  St  {h  mt  V,  »<) . 

When  Vi  has  the  form 

1      Vi' 

the  integral  of  this  equation  is 

T  — 12  =  —  S{  [h  nii  (Si  +  at  t)]  . 

831.  When  there  are  no  external  forces  acting  upon  the  sys- 
tem, the  sum  of  the  equations  (47226)  for  each  axis  multiplied  by  mi} 

if  xg  refers  to  the  centre  of  gravity,  is 

\  Mi  D\  xg  =  —  St  (wii  ki  V~J . 

If  the  resistance  is  proportional  to  the  velocity,  the  integral  of  this 

equation  is 

S{  nii  {Dt  xg  —  A)  —  —  Si  (nii  Jct  xt) , 
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in  which  A  is  an  arbitrary  constant.     If  kt  has  the  same  value  for  all 

the  bodies,  the  complete  integral  is 

k  x„  —  A  =  B  c 

-kt 

in  which  B  is  an  arbitrary  constant. 

832.  The  introduction  of  polar  coordinates,  and  the  substitu- 

tion of  A[J]  for  the  product  of  the  area  described  by  mf  about  the  axis 

of  &,  multiplied  by  the  mass  mi}  give  for  the  corresponding  equa- 
tions of  motion 

&tAy  =  Dma  —  kfiDtAf: 

When  there  are  no  external  forces,  the  sum  of  these  equations  is 

When  the  resistance  is  proportional  to  the  velocity,  the  integral  of 

this  equation  is 

DtSiAf=C—2i{kiAf), 

in  which  C  is  an  arbitrary  constant,  which  vanishes  if  the  area  van- 
ishes with  the  time.  If  k{  has  the  same  value  for  all  the  bodies 

the  next  integral  is 

2iAf  =  B(l—c-kt). 

So  that  the  rotation-area  instead  of  being  proportional  to  the  time  is  pro- 

portional to 

l  —  c-kt, 

hit  the  position  of  the  axis  of  maximum  rotation-area  is  not  affected  by 
this  uniform  mode  of  resistance,  which  proposition  is  from  Jacobi. 
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THE     CONCLUSION. 

833.  In  the  beginning,  the  creating  spirit  embodied,  in  the 

material  universe,  those  laws  and  forms  of  motion,  which  were  best 

adapted  to  the  instruction  and  development  of  the  created  intellect. 

The  relations  of  the  physical  world  to  man  as  developed  in  space 

and  time,  as  ordered  in  proximate  simplicity  and  remote  complica- 

tion, in  the  immediate  supply  of  bodily  wants  by  the  mechanic  arts, 

and  the  infinite  promise  of  spiritual  enjoyment  by  the  contempla- 

tion and  study  of  unlimited  change  and  variety  of  phenomena, 

are  admirably  adapted  to  stimulate  and  encourage  the  action  and 

growth  of  the  mind.  True  philosophy  begins  with  the  actual,  but 

may  not  remain  there ;  it  yields  sympathetically  to  the  projectile 

force  of  nature,  and  earnestly  forces  its  path  into  the  possible,  and 

even  into  speculations  upon  the  impossible.  But  whenever  the 

initial  impetus  is  exhausted,  the  philosopher  may  not  be  content 

to  remain  stationary,  or  merely  to  turn  upon  his  axis.  He,  then, 

descends  to  the  world  of  sensible  phenomena  for  new  instruction 

and  a  stronger  impulse.  Let  such  be  our  method.  In  the  present 

volume  the  attempt  has  been  made  to  concentrate  the  more  im- 

portant and  abtruser  speculations  of  analytic  mechanics  clothed  in 

the  most  recent  forms  of  analysis,  and  to  make  a  few  additions, 

which  may  not  be  rejected  as  unworthy  of  their  position.  Much, 

undoubtedly,  remains  imperfect  and  unfinished,  for  it  cannot  be 

otherwise  in  a  science  which  is  susceptible  of  infinite  improve- 

ment ;  and  much  must  soon  become  antiquated  and  obsolete  as 

the  science  advances,  and  especially  when  we  shall  have  received 

the  full  benefit  of  the  remarkable  machinery  of  Hamilton's  Quater- 
nions. But  it  is  time  to  return  to  nature,  and  learn  from  her  actual 

solutions  the  recondite  analysis  of  the  more  obscure    problems  of 
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celestial  and  physical  mechanics.  In  these  researches  there  is  one 

lesson,  which  cannot  escape  the  profound  observer.  Every  portion 

of  the  material  universe  is  pervaded  by  the  same  laws  of  mechanical 

action,  which  are  incorporated  into  the  very  constitution  of  the  hu- 

man mind.  The  solution  of  the  problem  of  this  universal  presence 

of  such  a  spiritual  element  is  obvious  and  necessary.  There  is  one 

God,  and  Science  is  the  knowledge  of  Him. 





APPENDIX. 

NOTE    A. 

ON    THE    FORCE     OF    MOVING    BODIES. 

It  is  remarkable,  that,  notwithstanding  the  convincing  argu- 
ments of  Leibnitz,  the  force  of  moving  bodies  is  almost  universally 

introduced  into  systems  of  analytic  mechanics  as  being  proportional  to 

the  velocity,  instead  of  to  the  square  of  the  velocity.  Some  philos- 
ophers, in  quite  an  unphilosophic  spirit,  have  stigmatized  the  early 

discussions  of  this  subject  as  a  war  of  words,  as  if  the  eminent 

geometers  who  entered  into  it  could  have  been  so  deficient  in  their 

powers  of  logic  and  analysis.  The  great  objection  to  the  propor- 
tionality of  the  force  to  the  velocity  is  derived  from  the  necessity 

which  it  involves  of  regarding  force  in  one  direction  as  beino;  the 

negative  of  that  which  is  in  the  opposite  direction.  On  this  ac- 

count, when  a  body  or  system  rotates  without  any  motion  of  transla- 
tion, its  aggregate  force  vanishes,  so  that  such  a  motion  would  seem 

capable  of  being  produced  without  any  expenditure  of  force,  and 

this  statement  has  actually  been  made  in  some  works  upon  astrono- 
my. Leibnitz  proposed  as  test  propositions  the  transfer  of  motion 

from  body  to  body  in  various  forms,  in  all  of  which  he  supposed  the 

whole  force  to  be  transferred  from  one  body  to  another  of  a  dif- 
ferent weight  without  any  external  action.  But  it  is  evident  from 

the  law  of  preservation  of  momentum  that  such  a  transfer  is  im- 
possible, and,  therefore,  this  test  cannot  be  practically  applied.  If, 

however,  in   the    case  of  the   impact   of    an   elastic  body  upon  a 
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heavier  one  at  rest,  the  striking  body  is  held  fast,  as  soon  as  it  comes 

to  instantaneous  rest  by  the  transfer  of  all  its  motion  to  the  other 

body,  the  subsequent  action  of  the  elasticity  must  finally  cause  the 

body  which  is  struck  to  move  forward  with  a  velocity  inversely 

proportional  to  the  square  root  of  its  mass.  The  external  effort 

applied  to  the  system  in  this  case  to  hold  the  body  at  rest,  arises 

from  the  force  with  which  the  elastic  spring  of  the  bodies  is  com- 
pressed, and  is  therefore  an  evidence  of  such  a  compression,  and 

a  proof  that  there  has  been  an  expenditure  of  force  in  its  produc- 
tion, although  the  momentum  of  the  system  is  not  changed  until 

the  body  is  held.  If,  again,  a  spherical  ball  were  to  be  impelled  into 

a  cylindrical  tube  of  the  same  diameter,  which  terminates  in  an- 
other cylinder  of  a  different  diameter,  but  which  containing  a  ball 

that  exactly  fits  it,  and  if  the  included  air  acts  as  a  compressed 

spring,  it  is  easy  to  imagine  such  a  mutual  proportion  of  the  parts 

and  weights  that  the  second  ball  shall  leave  the  cylinder  at  the 

very  instant  when  the  first  ball  arrives  at  a  state  of  rest,  and  when 

the  air  has  returned  to  its  initial  density.  In  this  case  the  whole 

living  force  of  the  first  ball  passes  without  increase  or  diminution 

into  the  second  ball,  and  the  momentum  is  not  preserved.  It  is 

true  that  an  external  force  is  required  to  keep  the  cylinders  in 

place,  but  this  is  a  mere  pressure,  which  is  no  more  entitled  to  be 

regarded  as  an  active  force  than  is  the  centrifugal  force,  or  any  of 

the  modifying  forces  which  are  represented  analytically  by  equa- 
tions of  condition.  Seeing,  then,  that  by  admitting  the  square  of 

the  velocity  to  be  the  true  measure  of  the  force  of  a  moving  body, 

the  fiction  of  negative  force  is  wholly  avoided,  and  the  funda- 
mental principles  of  mechanical  problems  are  reduced  to  their 

utmost  simplicity,  there  seems  to  be  sufficient  reason  to  reverse  the 

modern  decisions,  and  return  to  the  higher  philosophy  of  Leibnitz. 
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NOTE     B. 

ON     THE     THEORY     OF     ORTHOGRAPHIC     PROJECTIONS. 

For  the  convenience  of  students,  the    theory  of  orthographic 

projections  is  here  condensed  into  a  few  simple  formulae. 

The  projection  of  a  line  a  upon  another  line  b  is 

#6  =  a  cos  l . 

If  many  successive  lines  represented  by  at,  are  so  united  that 

each  line  begins  where  the  previous  line  ended,  and  if  the  last  line 

terminates  where  the  first  began,  the  sum  of  the  projections  is 

Si  (^  cos  *.)  =  0. 

If  there  are  four  of  these  lines,  and  if  the  three  first  are  mutually 

rectangular  and  parallel  to  the  axes  of  x,  y,  and  z,  this  equation 
becomes 

Sx  {ax  cos  I )  -f-  tf4  cos  *  =  0 . 

But  it  is  evident  that  ax  is  the  projection  of  — «4  upon  the  axis 
of  x,  whence 

CLX  =  fl54  COS  „  , 

and  if  the  subjacent  4  is  now  omitted  as  unnecessary,  this  equation 

gives 
cos*  =  Sx  (cos"  cos*), 

of  which  the  equation 

l  =  ̂ cos2«, 
is  a  particular  case. 

These  equations  may  be  applied  to  the  projections  of  plane 

areas,  if  each  area  is  represented  in  a  linear  form  by  the  length  of 
a  line  which  is  drawn  perpendicular  to  it. 
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containing  a  catenary,  .  .  143 

rotating  with  a  body  moving  upon 

a  given  line  of  its  surface,     .         253 

having  a  heavy  body  upon  its  sur- 
face,       254 

vibrated  by  Bessell,  .        .        .  298 

vibrated  by  Baily,         .         .         311 

containing    a    tautochrone    upon 
its  surface,     .        .        .        .        319 

385 

38G 

425 

432 

163 

242 
434 

458 

459 

273 

32 

425 

18 

40 

332 
318 

321 

D. 

Derivative  multiple, . 

Determinants,  theory  of, 
functional,     . 

196 
172 

183 

62 

Determinants  applied  to  multiple  deriva- 
tives and  integrals,      .         .         .196 

Devil  on  two  sticks,     ....         451 
Dubuat  on  the  law  of  resistance  of  a 

medium,        .         .         .         .         292 

experiments    on    the     pendulum 

against  a  resistance,       .         .         294 
Dupin  on  orthogonal  surfaces, .         .         .79 

E. Economy  dynamic,  of  nature,  .         .         .  168 
Elasticity,   116 

Electricity,  statical,  .         .         .         .         .44 

Ellipse,  spherical,         ....         147 
described  by  central  force  which 

is  proportional  to  distance,          .  385 

described  under  the  law  of  gravi- 
tation,          386 

Ellipsoid,  attraction  of,  ...         69 
Chaslesian  shell,  .  .  .  .70 

of  revolution,  attraction  of,  .  87 

of  closest    approximation    to    at- 
traction  of  spheroid,  .  .  .  103 

of  expansion,  .  .  .  .  118 

of  reciprocal  expansion,  .  .121 

with  catenary  upon  its  surface,  154 
with  brachistochrone  on  its  surface,  344 

defining  surface  of  the  brachisto- 
chrone,        347 

of  inverse  inertia,    .         .         .         435 

of  inertia,   436 

Elliptic  integrals  for  attraction  of  ellipsoids,  83 
for  the  catenary  upon  the  cone,  .  147 

referred  to  spherical  ellipse,  .  149 

for  the  catenary  upon  the  sphere,  157 

for  the  simple  pendulum,  .  .  256 
for  tautochrone  on  a  moving  curve,  318 

for  tautochrone  on  a  cycloidal  cyl- 
inder,   321 

for  brachistochrone  with   parallel 

forces,   333 

for  brachistochrone  on  paraboloid,  337 
for   brachistochrone    on   inverted 

paraboloid,  ....  341 
for  brachistochrone  on  cone,  .  343 

for  brachistochrone  on  sphere,  .  346 

for  circular  brachistochrone,   .         354 
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Elliptic  integrals  for  two  forms  of  central 
force,   389 

for  third  form  of  central  force,  .       406 

for  motion  upon  a  cone,        .         .  413 

for  motion  upon  a  paraboloid,  .       416 

for  motion  upon  an  inverted  para- 
boloid,         417 

for  the  time  of  spherical  pendulum,  418 

for  the  azimuth  of  the   spherical 

pendulum,  ....  423 
for  forms  of  force  directed  towards 

axis,   428 

for  rotation  of  a  free  solid,         .       442 

for  the  gyroscope,  .         .         .  446 

for  the  top,         ....       450 

Epicycloid  a  tautochrone,  .         .         .327 
a  brachistochrone,     .         .         .331 

path   described  under   action    of 

central  force,      ....  379 

Equation  of  tendency  to  motion,  .         .         712 

of  motion,  differential,  .         .         .     818 

of  equilibrium,  8^ 

of  orthogonal  cosines,   .         .         .15a, 
of  instantaneous  axis  of  rotation,      1 715 

of  rotation  for  cylinder,         .         .  2314 
of  condition  involved  in  those  of 

motion  and  rest,  .         .         .  2612 

of  condition  referred  to  normal,       2716 

of  tendency  to  motion  expressed 

by  potential,  ....  3431 
of  resultant,  .  .  .  .  3721 

of  potential  of  gravity,  .  .  459 

Laplace's,  of  potential,  .  .  463 

Laplace's,  modified  by  Poisson,  492 
of  potential  of  an  infinite  cylinder,  4931 

of  relation  of  potential  to  its  para- 
meter,          554 

of  Gauss,  for  action  normal  to 
surface,   6024 

of  attraction  of  ellipsoid  in  direc- 
tion of  either  axis,       .         .         .  8221 

Legendre's,    for    attraction    of 
ellipsoid,   83i2 

of  Legendre  upon  attraction,  .       8610 

of  function  for  expression  of  the 

attraction  of  an  ellipsoid,    .         .  8622 

of  attraction  of  a  homogeneous  ob- 
late ellipsoid  of  revolution,         .  87^ 

Equation  of  attraction  of  a  homogeneous 
prolate  ellipsoid  of  revolution,    .  8818 

of  function  developed  in  cosines 

of  multiple  angles,      .         .         .  8913 

of  elementary  functions  of  Legen- 

dre's functions,          .         .         .  9324 

of  Legendre's  functions  in  spe- 
cial form,   993 

of  theorem   for  development   into 

Legendre's  functions,    .         .  10122 

Laplace's    upon    Legendre's 
functions,.         .         .         .         .    102s 

Laplace's  more  general  form  of 
Legendre's  functions,    .        .  10220 

of  potential  of  ellipsoid  referred  to 
centre  of  gravity,      .         .         .  10320 

of  Legendre's  second  function,    1043 
of  external  potential  of  spheroid 
with  the  introduction  of  ellipsoid 

of  nearest  attraction,          .         .10724 

for  axes  of  nearest  ellipsoid  of  at- 
traction,     1083 

of   potential  for   point   near  the 

spheroid,   1103 

Laplace's,  for  spheroid    which 
differs  little  from  a  sphere,        .  115^ 

of  ellipsoid  of  expansion, .         .       1 1 88 
of  surface  of  distorted  expansion,  11913 

of  total  expansion,       .         .         .  12027 

of  ellipsoid  of  reciprocal  expan- 
sion, ......  121u 

of  equilibrium  of  translation,     .     127^ 
of  funicular,        ....  13814 

of  catenary,     ....       1382T 

of  extensible  catenary,        .         .  14116 

of  catenary  upon  a  surface,      .        1422 

of  pressure  of   catenary  upon  a 
surface,     .         .         .         .         .  142,^ 

of  catenary   upon    a    surface    of 
revolution,    ....        14429 

of  arc  of  spherical  ellipse,    .         .  1492a 

of  total  expenditure  of  action, .       16  221 

of  living  forces,   .         .         .         .  163M 

Lagrange's  canonical,  of  motion,  164^ 

Hamilton's    changes    of    La- 
grange's canonical  forms,       .  16527 

for    characteristic    and    principal 

functions,  ....  17120 
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Equation  of  determinants,  .  .  .  173,, 
linear  solved  by  determinants,  .  177 
simultaneous  differential,   related 

to  linear  partial  differential,  .  199 
differential  in  normal  form,  .  2104 

partial  differential  for  Jacobian 
multiplier,  ....  215^ 

common  differential  for  Jacobian 

multiplier,  .  .  .  .  21 62 

of  Jacobian  multiplier  for  equa- 
tions of  motion,  .  .  .  23719 

of  translation,  .  .  .  .  2422 

of  time  of  describing  a  line,  .  243,,, 

of  centrifugal  force,  .         .       24518 

of  motion  upon  a  rotating  line,    .  24  7^ 
of  motion  of  a  heavy  body  upon  a 

moving  line,  .  .  .  .  25  78 

of  gain  of  power  by  motion  of  the 

line  of  support,  .         .         .  25925 

of  motion  of  a  fixed  line  through 

a  resistance,  ....  2713 

of  motion  against  friction,  .  27310 
of  fixed  force  for  tautochrone,  .  31 79 

of  tautochrone  for  central  force,  323i0 

of  general  brachistochrone,  .  32818 
of  brachistochrone  for  fixed  force,  32827 

of  brachistochrone  for  radius  vec- 

tor and  perpendicular  from  origin 
in  central  force,        .         .         .  33015 

of   brachistochrone    for    parallel 

forces,  .  .  .  .  .  33131 
of  brachistochrone   on  surface  of 

revolution  for  central  force,      .  32428 

of  brachistochrone  of  given  length,  34  7^ 

of  brachistochrone  of  given  expen- 
diture of  action,        .         .         .  34910 

of  the  holochrone  when  the  tune  is 

a  given  function  of  the    poten- 
tial,   35714 

of  tautochrone  from  Lagrange,  3612 

of  tachytrope,  ....  36417 

of  tachytrope  for  central  foi-ce  in 
resisting  medium,      .         .         .    3664 

of  tachistotrope   in  resisting  me- 
dium,          36915 

of  bary trope,   .         .         .         .       37031 

of  path  of  a  point  upon  a  surface 
with  fixed  forces,       .         .         .377, 

Equation  of  path  of  a  body  when  the  force 
is  central,  ....  37822 

of  path  of  a  body  upon  a  surface 
of  revolution  with  central  force 

dh'ected  toward  the  axis,       .     4129_1T 

of  the  spherical  pendulum,       .    41817_21 
of  force  for  the   description   of  a 

given  curve,      ....  430*, 
of  Euler  for  rotation  of  a  solid,    437^ 

of  living  force  in  a  rolling  solid,  .  45  72T 

of  sliding  motion,           .         .         •  4585 
of  variation  of  arbitrary  constants,  46020 

of  variation  of  initial  values  of  va- 
riables      ....       462lljl2 

of  Hansen's  method  of  perturba- 
tions,    .         .         .     46  58,  46635,  46710 

of  small  oscillations,     .         .         .  4692r 

of  multiplier  in  a  resisting  medium,  47231 

of  power  in  a  resisting  medium,  .  47415 

of  translation    of  a   resisting  me- 
dium,         4742J 

of  rotation  in  a  resisting  medium,  475u 

Equilibrium,  equations  of,  .  .  .7 
conditions  of,  .  .  .  .  29 

stable  or  not,  .  .  .  .30 

of  translation,  .  ,  .  .  127 

of  rotation,  .  .  .  .  .129 
oscillation  about  position  of,       .       471 

Euler,  integral,   91 
note  on  erroneous  notation,       .       356 

on  differential  equations,       .         .  214 

centrifugal  force  on  the  brachisto- 
chrone,      .         .         .  v.  329 

on  the  brachistochrone  of  central 

forces,   330 

on  epicycloidal  brachistochrone,  331 

error    regarding    the     brachisto- 
chrone,   353 

compound  brachistochrone,  .  354 

compound  tautochrone,  .         .  358 

tachytrope  of  heavy  body,  .  364 

tachytrope  for  parallel  forces,  .  366 

tachytrope  of  constant  velocity  in 

a  given  direction,        .         .         .367 
tachistotrope  of  heavy  body,      .       369 

tautobaryd  of  heavy  body,    .         .373 

path   of  body  gravitating  to  two 
centres,   429 
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Euler,  equations  of  rotation  of  solid,  .  437 
rotation  of  solid,    ....  443 

E volute  of  the  parabola  a  tachy trope,  .       368 

Expansion,  linear,  .  .  .  .  .117 

ellipsoid  of,  .  .  .  .118 
surface  of  distorted,  .  .  .  119 

total,   120 

Expenditure  of  action,      .         .         .         .162 

Fontaine  on  tautochrone,       .        .        .362 

Force,  its  origin,    .....  1 
measure  of,   2 

of  moving  bodies,       ...  4 
of  nature,   28 

fixed,   28 

expressed  in  form,  .  .  .29 

potential  of,  .  .  .  .  29 

temporarily  fixed,  .         .         .34 

composition  and  resolution  of,    .        35 

moment  of,   38 

couple  of,   40 

in  a  plane,   42 

parallel,  .....  42 

modifying,  .  .  .  .  .124 

internal,  may  be  neglected  in  trans- 
lation and  rotation,  .  .  .131 

equal  and  parallel,  in  equilibrium,  132 

principle  of  living,  .  .  .  163 

of  perturbation,  .  .  .459 

of  moving  bodies,  .         .         .479 
central.  See  Central  Force. 

centrifugal.  See  Centrifugal  Force. 

Form,  expressive  of  force,  .  .  .29 

French,  weights  and  measures  introduced,  293 

Friction  opposing  motion  of  a  body,  .  .270 

changing  sliding  to  rolling  motion,  458 
Functional  determinant,  ....  183 

Funicular,     .         .         .         .         .         .134 

G. Gamma  function,      .         .         .         .         .91 

note  on,   356 

Gauss  on  action  perpendicular  to  surface,     60 

maxima  and  minima  of  potential 

of  gravitation,    .         .         .         .62 
determinants,    .         .         .         .173 

Gould's  Astronomical  Journal,  on  partial 
multipliers,    231 
on  motion  when  force   emanates 

from  an  axis,  ....  428 

Gravitation,  potential  of,  .         .         .         .43 

potential  for  mass,     ...  45 

the    type    of  equal   and  parallel 
forces,    132 

its  level  surfaces,       .         .         .  132 

Gravity.     See  Centre  of  Gravity. 

Gudermann  on  spherical  pendulum,       .  423 

Gyration  of  the  devil,    .         .                  .  453 

of  the  hoop,    456 

Gyroscope,    .         .         .         .         .         .  443 

H. Hamilton's  characteristic  function,         .  162 

on  Lagrange's  canonical  forms,  164 

modification   of  Lagrange's  ca- 
nonical forms,  .         .         .       165 

principal  function,         .         .         .169 

new  method  of  dynamics,  .         .       171 

quaternions,          .         .         .         .476 

Hansen,  method  of  perturbations,        .       465 

Helix,  rotating  with  body  moving  upon  it,  254 
Holochrone,   354 

Hoop,  motion  of,  .         .         .         .         .       451 

Hyperbola,  determining  the  limits  of  mo- 
tion on  a  rotating  circumference,  265 

described  by  central  force,        .       380 

described    by    repulsive     central 

force  proportional  to  distance,     .  385 
described  by  force  of  gravitation,    386 

Hyperboloid  equilateral    asymtotic,    con- ' 
taining  catenary,  .  .  .  159 

defining   limits  of  catenary  upon 

other  surfaces  of  revolution,  .  160 

homofocal  with  ellipsoid,  .  .  77 

containing  brachistochrone,  .         .347 

Inertia  of  matter,    1 

moment  of,         ....  434 

Integral  multiple,    197 
of  differential  equations,  .         .  199 

Integrals,  systems  of,  ...  .  203 
elliptic.     See  Elliptic  Integrals. 
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Integration  of  the  differential  equations  of 
motion,   172 

Involute  of  circle,  described  in  a  resisting 

medium,   274 
a  tautoehrone,  ....       325 

Ivory  on  corresponding  points,        .         .70 

Ivory  sphere  vibrated  by  Bessel,         .       298 

J. 
Jacobi  on  Legendre's  functions,  .        .     88 

on  determinants,        .         .         .195 
on  normal  forms    of   differential 

equations,   210 
new  multiplier, .         .         .         .       214 

principle  of  last  multiplier,    .         .  228 

on  the  motion  of  a  body  in  a  resist- 
ing medium,       .         .         .         .376 

on  motion  of  a  body  gravitating  to 

two  fixed  points,         .         .         .  429 

on  motion    of  a  system  in  a   re- 
sisting medium,    ....  474 

Jellett  on  the  tangential  radius  of  curva- 
ture of  the  brachistochrone  on  a 

surface,   347 

on  the  brachistochrone  of  a  heavy 

body  in  a  resisting  medium,        .  353 

Klingstierna's  problem  of  the  tachy- 
trope,   365 

Lagrange,  method  of  mechanical  analysis,      9 

canonical  forms  of  equations  of  mo- 
tion,   165 

on  determinant  of  derivatives,  .       194 

on  differential  equations,       .         .  214 

modification  of  Eulerian  multi- 

plier,   232 
on  the  tautoehrone,  .         .         .       359 

familiar  formula  of  the  tautoehrone,  361 

on  the  rotation  of  a  solid,      .         .  443 

on  the  motion  of  a  body  gravitat- 
ing to  two  centres,      .         .         .  429 

on  the    method    of  perturbations 

by  the  variation  of  arbitrary  con- 
stants,   459 

Lagrange  on  small  oscillations,  .        .      472 

Lamina,  attraction  of  infinite,  .         .         .46 

Lame',  relation  of  potential  to  its  parameter,    55 
Laplace,  equation  for  the  potential  of 

gravitation,         .         .         .         .46 
equations  modified  by  Poisson,        48 
attraction  of  Newtonian  shells,  .     75 

functions,  .....         88 

theorems   on    Legendre's   func- 
tions, ......  102 

equation      for     nearly     spherical 

spheroid,   115 
on  the  tautoehrone,   .         .         .       360 

on  the  rotation  of  a  solid,      .         .  443 

method  of  perturbations,       .         .  462 

Lead  sphere,  vibrated  by  Newton,      .       293 
Legendre,   attraction    of  Newtonian 

shells,   75 

attraction  of  ellipsoids,       .         .         83 

theorems  on  the  attraction  of  ellip- 
soids,        86 

functions,      .         .         .         .         .88 

special  form  of  functions,   .        .         99 

Leibnitz  on  the  force  of  moving  bodies,    479 

Lemniscate,  described  under  law  of  cen- 
tral force,   380 

Level  surfaces,      .         .         .         .         .         32 

of  gravity,   132 

a  syntachyd,      .         .         .         .375 
Limits  of  brachistochrone,          .         .         .  348 

of  body  moving  under  central  force,  40  7 

of  heavy  body  on  surface  of  revo- 
lution,          413 

Linear  equations  solved  by  determinants,  177 

partial  differential  equations,         .  199 

equations  of  small  oscillations,   .       469 

Logarithmic  spiral  described  by  a  body  on 

a  rotating  straight  line,  .  .251 

described  against  resistance,  .  274 
a  tautoehrone,  .  .  .  .325 

a  tachytrope,  .  .  .  .365 
described  under  the  action  of  a 

central  force,      .         .         .         .379 

M. Maclaurin's  attraction  of  ellipsoid,  .     75 
Mass  defined,    2 

Matter,  inertia  of,     .         .         .         .  .1 
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Maupertius,  action  of  a  system, 
162 

principle  of  least  action, 168 

Maximum  and  minimum  of  potential,    . 29 

for  equal  and  parallel  forces, 132 

of  velocity  of  pendulum  in  a  re- 
sisting medium, 

283 
Measures,  French  adopted, 293 

Medium,  resisting,          .... 270 

brachistochrone  in, 350 

holochrone  in,   , 359 

tachytrope  in, 
364 

tachistotrope  in, 
369 

bary trope  in, 371 

tautobaryd  in,    .         .         .    "     . 
371 

synchrone  in, 374 

syntachyd  in,     . 375 

systems  moving  in,        . 472 

Method  of  multipliers,   .... 

25 

Hamilton's,  of  dynamics,  . 
162 

Lagrange's,  of  perturbation, . 
459 

Laplace's,  of  perturbations, 
462 

Hansen's,  of  perturbations, 465 
Modifying  forces,       .         .         . .  124 
Moment  of  force,   38 

resultant,       .... .     39 

of  inertia,   435 

Motion  necessary  to  phenomena, 1 

uniform,    .   r     . 
2 

measure  of,  . 2 

tendency  to,      . 5 

equation  of,  . 
7 

perpetual,  impossible  in  nature, 31 

of  translation, 241 

of  a  point,          :         .         ... 242 

of  rotation,    .... .  433 

of  a  system,       .... 458 

Multiple  derivatives  and  integrals,    . .  196 

Multiplier,  method  of,   . 

25 Jacobian,   .... .  214 

principle  of  last, 228 

for  equations  of  motion, 
.  236 

for  motion  of  a  point, 
244 

*       for  motion  in  a  resisting  medium, .  472 

N. 
Nature,  forces  of,       . .     28 

Newton's  shell,   

70 

Newton's  experiments  on  pendulum,       .  293 
path  described  when  the  central 
force  is  inversely  as  the  cube  of 

the  distance,  .        .        .        .  379 

Normal  form  of  differential  equations,  .       210 

Notation  of  reference,       ....       4 

Nulty  on  the  hoop,      ....       455 

on  rolling  motion,  .         .         .457 
Nutation  of  rotation,      ....       456 

0. 

79 

30 

246 

Orthogonal  surfaces,  .... 

Oscillations  about  position  of  equilibrium, 

of  a  body  on  a  fixed  line, 

of  a  body  on  a  uniformly  rotating 

line,   ...... 
on  a  rotating  circumference, 

of  the  pendulum,  .... 

of  a  heavy  body  on  a  rotating  cir- 
cumference,       .... 

of  the  pendulum  when  the  resist- 

ance is  proportional  to  the  veloc- 

ity.   • 
of  the  pendulum  when  the  resist- 

ance is  proportional  to  the  square 
of  the  velocity,  .... 

of  the  pendulum  with  the  medium,  287 
of  the  pendulum  when  opposed  by 

friction,       .... 

of  the  pendulum  observed 

Newton,  .... 

of  the  pendulum  observed 

Ddbuat,  .... 

of  the     pendulum    observed 
BORDA,        .... 

of  the  pendulum  observed 
Bessel,      .... 

of  the  pendulum  observed 

Bailey,     .... 
small,  theory  of, 

248 

252 

256 
266 

282 

285 

290 

by 

by 

by 
by 

by 

293 

295 
296 

298 

311 

469 

P. 
Paper  sphere  vibrated  by  Dubuat,  .  .  295 

Parabola,  path  of  projectile,..         .         .  258 
described  while  rotating,       .  .267 

a  tachytrope,     ....  368 
described  by  law  of  gravitation,  .379 
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Parabola,  condition  of  description,         .       431 
Paraboloid,  brachistochrone  on,         .         .  336 

path  of  heavy  body  on,      .         .       416 
Parallel  and  equal  forces,  .         .         .132 

Parallelopiped  of  translation,         .         .         11 
of  rotation,   14 

of  forces,   36 

of  moments,  .         .         .         .         .39 

of  rotation-area,         .         .         .       434 
Parameter  of  potential,     .         .         .         .54 

Perpetual  motion  impossible  in  nature,  31 

Pendulum,  simple,   255 

in  a  resisting  medium,       .         .       281 

seconds,  of  uncertain  length,  .  313 

spherical,   418 

spherical,  related  to  the  gyroscope,  446 
Perturbations,  methods  of,  459 

Planetary  perturbations,  case  of,  .       463,  465 

Platinum  sphere  vibrated  by  Borda,       .  296 

Poinsot,  analysis  of  rotation,      .         .         12 
relations  of  axis  of  rotation  and 

of  maximum  rotation-area, .         .  436 

velocity  of  rotation  about  axis  of 

maximum  area,  ....  439 

on  the  rotation  of  a  solid,  .         .       443 

Point,  equilibrium  of,         .         .         .         .128 
motion  of,   245 

Poisson,  modification  of  Laplace's  equa- 
tion,    48 

theorem  on  Legendre's  functions,  100 
on   the   pendulum   in  a  resisting 
medium,   286 

on  the  top,         .         .         .         .450 

Pole  of  synchrone,   373 
Potential,   29 

of  gravitation,        .         .         .         .45 

relation  to  its  parameter,  .         .         54 

of  spheroid,   99 

of  equal  and  parallel  forces,      .       132 
curve,   407 

Power  defined,      .....  3 

law  of,   163 

gained  or  lost  by  a  moving  line,      259 
Pressure  upon  the  brachistochrone,  .         .  329 

Principle  of  living  forces,       .         .         .       163 
of  least  action,       ....  167 

of  last  multiplier,       .         .         .228 

Progression,  rotary,   456 

Projectile,  path  of,         ...  410 
disturbed,   464 

Projections,  theory  of  orthographic,       .       481 
Puisieux  on  the  tautochrone, .        .        .326 

Q- 

Quaternions  of  Hamilton  promise  a  new 

progress  to  analytic  mechanics,     .  476 

R. 

Reference,  notation  of  in  this  book,  .         .       4 

Residuals  to  express   integral    of  central 
force,   380 

Resisting  medium.     See  Medium. 
Resultant  defined,   36 

vanishes  in  equilibrium  of  transla- 
tion,         128 

Resultant-moment,   39 
in  relation  to  rotation,       .         .       130 

of  gravity  for  centre  of  gravity,     .  133 
Riccati  on  central  force,     .         .         .379 

Rolling  of  solid,   457 

Rotation,  analysis  of,  .  .  .  .  12 
combined  with  translation,  .  .16 

instantaneous  axis  of,         .         .         19 

tendency  to,   40 

of  expansion,     .         .         .         .120 

equilibrium  of,      .         .         .         .  129 

of  line  upon  which  a  body  moves 

about  a  vertical  axis, .         .         .261 
motion  of,   433 

of  a  solid  body,     .         .         .  "       .  434 
Rotation-area,   433 

in  a  resisting  medium,  .         .         .475 

S. 

Screw  motion  includes  that  of  all  solids,        1 9 

Seconds  pendulum,  of  uncertain  length,   .  313 
Sections,  conic.     See  Conic  Sections. 

Shell,  attraction  of  spherical,    .         .         .56 
attraction  of  Chaslesian,        .        58 

Chaslesian  ellipsoidal,       .        .     70 

Newtonian,    ....        70 

Sleep  of  the  top,   451 
Sliding  motion,      .....       457 

Solid  motion  analyzed,      .         .         .         .18 

rotation  of,         .         .         .         .434 
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Solution  of  a  partial  differential  equation,  199 

of  continuity  in  law  of  resistance,  273 

Sphere,  attraction  of,        .         .         .         .57 

having  catenary  upon  its  surface,  157 

vibrated  as  a  pendulum,        .         .  294 

a  synchrone,      .         .         .  3  74 

condition  of  description,        .         .  433 

Spheroid,  potential  of,  .         .         .         .         99 
which  is  almost  an  ellipsoid,  .         .110 

almost  a  sphere,         .         .         .       Ill 

Spiral  logarithmic  path  on  a  rotating  line,  251 

logarithmic  described  against  fric- 
tion,    274 

logarithmic  a  tautochrone,         .       325 
a  brachistochrone,         .         .         .331 

logarithmic  a  tachytrope,  .         .       365 

logarithmic  described  when   cen- 
tral force  is  inversely  proportion- 

al to  the  cube  of  distance   .         .  379 

path  of  the  axis  of  a  solid,          .       443 

Stability  of  the  funicular, .         .         .         .135 

Stader,  special  cases  of  central  force,.       379 

central  force  inversely  proportion- 
al to  the  cube  of  the  distance,     .  385 

central  force  inversely  proportion- 

al to  the  fourth  power  of  the  dis- 
tance,          404 

central  force  inversely  proportion- 
al to  the  seventh  power  of  the 

distance,     .....  406 

Straight  line,  attraction  of  infinite,        .         52 

rotating  uniformly,  with  body  mov- 

ing upon  it,         ...         .  249 

described  by  heavy  body, .         .       255 

rotating  uniformly  about  vertical 
axis,    and   described    by    heavy 

body,   262 

rotating   uniformly  about  an   in- 
clined  axis,   and    described    by 

heavy  body,    .         .         .         .269 

a  tachytrope,         .         .         .         .365 

Superposition  of  small  oscillations,         .       470 

Surfaces  of  the  second  degree  homofocal,       79 

orthogonal,    .         .         .         .         .79 

of  distorted  expansion,       .         .       119 

of  revolution  containing  catenary,  143 

Sui'faces  of  "revolution   containing   tauto- 
chrone,      .         .         .         .         .  322 

of  revolution  containing  brachis- 
tochrone,   .....  334 

.with  point  moving  upon  it,         .       376 
Synchrone,        ......  373 

Syntachyd,    .         .         .         .'        .         .375 
Systems  of  integrals,  ....  203 

motions  of,         ...  458 

motions  in  resisting  medium, .       .  472 

T. 

Tachistotrope,  ..... 

Tachytrope,  ..... 
Tautobaryd,      ..... 
Tautochrone,         .... 

compound,     .... 

in  Lagrange's  form, 
restricted  by  Fontaine, 

Tension  of  the  catenary, 

Time  disturbed  in  Hansen's  method, 
Top,  spinning  of,  . 
Translation,  analysis  of,    . 

combined  with  rotation,    . 

tendency  to,  .    _    . 

equilibrium  of,  . 
motion  of,      .         . 
in  a  resisting  medium, 

Trifolia  of  Stader, 

Trajectory  of  level  surfaces, . 

.  369 

364 

.  370 
316 

.  358 

359 

.  362 

139 

.  465 
449 

.      -7 

16 

.     37 
127 

.  241 
474 

.  379 

32 

Variation  of  the  characteristic  function,    .  166 
of  a  function  of  the  elements  of  a 

determinant,  .         .         .         .180 

rotary,    456 
of  arbitrary  constants,        .         .       459 

Velocity,  .   3 
ViEiXLE  on  the  motion  of  a  body  along  a 

rotating  straight  line,      .         .       262 

Virtual  velocities,  principle  of,  .        .         .7 

W. 

Weights,  French,  adopted,        .         .         .  293 
Wooden  sphere  vibrated  by  Newton,        293 
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